nuclear protein import
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 1)

H-INDEX

44
(FIVE YEARS 0)

2019 ◽  
Vol 126 ◽  
pp. 140-142
Author(s):  
Marketa Hlavackova ◽  
Elissavet Kardami ◽  
Robert Fandrich ◽  
Grant N. Pierce

2012 ◽  
Vol 90 (12) ◽  
pp. 1559-1568 ◽  
Author(s):  
Mirna N. Chahine ◽  
Elena Dibrov ◽  
David P. Blackwood ◽  
Grant N. Pierce

Mechanical stress contributes to hypertension and atherosclerosis partly through the stimulation of vascular smooth muscle cell (VSMC) proliferation. Oxidized low density lipoprotein (oxLDL) is another important atherogenic factor that can increase VSMC proliferation. The purpose of this study was to investigate whether oxLDL could further enhance the proliferative action of mechanical stretch on VSMC, and to determine the mechanism responsible for this interaction. Because nuclear protein import is critical in regulating gene expression, transcription, and cell proliferation, its involvement in the mitogenic effects of oxLDL and mechanical stress was studied. OxLDL enhanced the proliferative effects of mechanical stretch on its own in rabbit aortic VSMC, and induced increases in the expression of HSP60 in an additive manner. Adenoviral-mediated overexpression of HSP60 induced increases in cell proliferation compared with uninfected VSMC. Mechanical stretch and oxLDL stimulated the rate of nuclear protein import in VSMC and increased the expression of nucleoporins. These effects were sensitive to inhibition of the MAPK pathway. We conclude that oxLDL and mechanical stretch have a synergistic effect on VSMC proliferation. This synergistic effect is induced through a stimulation of nuclear protein import via HSP60 and an activation of the MAPK pathway.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Mirna N Chahine ◽  
Maxime Mioulane ◽  
Gabor Földes ◽  
Alexander Lyon ◽  
Sian E Harding

During cardiac hypertrophy, cardiomyocytes (CM) present alterations in gene expression and increased contractile protein content. Nuclear protein import (NPI) is critical in regulating gene expression, transcription, and subsequently cell hypertrophy. However, it is unknown how the nuclear transport machinery (transport receptors and nuclear pore complex (NPC)) functions to sustain increased demands for nucleocytoplasmic trafficking. The aim of this study was to determine if exposure of adult CM to phenylephrine (PE) affects hypertrophy by altering NPI and NPC density. Comparisons were made to adult failing rat and human CM. Rat myocytes were enzymatically isolated from adult hearts, and used for immunocytochemistry, qPCR and western immunoblotting. Failing CM were obtained from explanted human hearts at the time of transplant and from a rat model of myocardial infarction-induced hypertrophy and failure. Rat adult CM exposed for 48h to PE were injected with a protein import substrate (Alexa488-BSA-NLS) to visually monitor nuclear import with the confocal microscope. The effects of P38 MAPK inhibitor, HDAC inhibitor, Exportin-1 (CRM-1) inhibitor, and GSK-3 β inhibitor were investigated. Cell and nuclear sizes were increased in PE treated-adult rat CM and in the adult failing rat and human CM compared to normal CM. In contrast, PE depressed the rate and maximal NPI (by 65 +/- 3.4 % (3.55 from 5.46), p<0.05) as well as nucleoporin p62 mRNA and protein expression levels in adult rat CM compared to non-treated CM. Nucleoporin p62, cytoplasmic Ranbp1, and nuclear translocation of importins (Imp.α and β) relative densities were also decreased in PE treated-adult rat CM and in adult failing rat CM and human heart tissue compared to normal controls. On the contrary, CRM-1 nuclear export relative density was increased during the same pathological conditions. Thus NPI downregulation is linked to an increased nuclear export required by CM to generate the hypertrophic phenotype. All these effects were P38MAPK, HDAC and CRM-1 dependent but GSK-3Beta independent in rat CM. Our results show that alterations in NPI and NPC density occur in failing CM as well as in CM under hypertrophic stimuli. NPI may represent a critical therapeutic target in hypertrophic conditions.


2010 ◽  
Vol 21 (4) ◽  
pp. 630-638 ◽  
Author(s):  
Yutaka Ogawa ◽  
Yoichi Miyamoto ◽  
Munehiro Asally ◽  
Masahiro Oka ◽  
Yoshinari Yasuda ◽  
...  

Npap60 (Nup50) is a nucleoporin that binds directly to importin α. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. In this study, we provide both in vitro and in vivo evidence that Npap60L and Npap60S function differently in nuclear protein import. In vitro binding assays revealed that Npap60S stabilizes the binding of importin α to classical NLS-cargo, whereas Npap60L promotes the release of NLS-cargo from importin α. In vivo time-lapse experiments showed that when the Npap60 protein level is controlled, allowing CAS to efficiently promote the dissociation of the Npap60/importin α complex, Npap60S and Npap60L suppress and accelerate the nuclear import of NLS-cargo, respectively. These results demonstrate that Npap60L and Npap60S have opposing functions and suggest that Npap60L and Npap60S levels must be carefully controlled for efficient nuclear import of classical NLS-cargo in humans. This study provides novel evidence that nucleoporin expression levels regulate nuclear import efficiency.


Sign in / Sign up

Export Citation Format

Share Document