scholarly journals Local Field Potentials in a Pre-motor Region Predict Learned Vocal Sequences

2020 ◽  
Author(s):  
Daril E. Brown ◽  
Jairo I. Chavez ◽  
Derek H. Nguyen ◽  
Adam Kadwory ◽  
Bradley Voytek ◽  
...  

AbstractNeuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity typically focuses on patterns of sequential bursting in small carefully identified subsets of single neurons in the HVC population. Much less is known about population dynamics beyond the scale of individual neurons. There is a rich history of using local field potentials (LFP), to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time and have been used to study and decode complex motor behaviors, such as human speech. Here we characterize LFP signals in the putative HVC of freely behaving male zebra finches during song production, to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates that LFP is a useful signal for studying motor control in songbirds. Surprisingly, the time frequency structure of putative HVC LFP is qualitatively similar to well established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight to common computational principles for learning and/or generating complex motor-vocal behaviors.Author SummaryVocalizations, such as speech and song, are a motor process that requires the coordination of several muscle groups receiving instructions from specific brain regions. In songbirds, HVC is a premotor brain region required for singing and it is populated by a set of neurons that fire sparsely during song. How HVC enables song generation is not well understood. Here we describe network activity in putative HVC that precedes the initiation of each vocal element during singing. This network activity can be used to predict both the identity of each vocal element (syllable) and when it will occur during song. In addition, this network activity is similar to activity that has been documented in human, non-human primate, and mammalian premotor regions tied to muscle movements. These similarities add to a growing body of literature that finds parallels between songbirds and humans in respect to the motor control of vocal organs. Given the similarities of the songbird and human motor-vocal systems these results suggest that the songbird model could be leveraged to accelerate the development of clinically translatable speech prosthesis.

2021 ◽  
Vol 17 (9) ◽  
pp. e1008100
Author(s):  
Daril E. Brown ◽  
Jairo I. Chavez ◽  
Derek H. Nguyen ◽  
Adam Kadwory ◽  
Bradley Voytek ◽  
...  

Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jakob Jessberger ◽  
Weiwei Zhong ◽  
Jurij Brankačk ◽  
Andreas Draguhn

It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.


2007 ◽  
Vol 8 (3) ◽  
pp. 165-171 ◽  
Author(s):  
Asok K. Sen ◽  
Jonathan O. Dostrovsky

Using a continuous wavelet transform we have detected the presence of intermittency in the beta oscillations of the local field potentials (LFPs) that were recorded from the subthalamic nucleus (STN) of patients with Parkinson's disease. The intermittent behavior was identified by plotting the wavelet power spectrum of the LFP signal on a time–frequency plane. We also computed the temporal variations of scale-averaged wavelet power and wavelet entropy (WE). An intermittent pattern is characterized by large amounts of power over very short periods of time separated by almost quiescent periods. Time-localized changes in WE further support the evidence of intermittency. The cause and significance of the intermittent beta activity are presently unclear. It may be due to complex interactions of the cortico-basal-ganglia networks converging at the STN level.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Abdelrahman Sharafeldin ◽  
Vanessa L Mock ◽  
Stephen Meisenhelter ◽  
Jacqueline R Hembrook-Short ◽  
Farran Briggs

Abstract The effects of visual spatial attention on neuronal firing rates have been well characterized for neurons throughout the visual processing hierarchy. Interestingly, the mechanisms by which attention generates more or fewer spikes in response to a visual stimulus remain unknown. One possibility is that attention boosts the likelihood that synaptic inputs to a neuron result in spikes. We performed a novel analysis to measure local field potentials (LFPs) just prior to spikes, or reverse spike-triggered LFP “wavelets,” for neurons recorded in primary visual cortex (V1) of monkeys performing a contrast change detection task requiring covert shifts in visual spatial attention. We used dimensionality reduction to define LFP wavelet shapes with single numerical values, and we found that LFP wavelet shape changes correlated with changes in neuronal firing rate. We then tested whether a simple classifier could predict monkeys’ focus of attention from LFP wavelet shape. LFP wavelet shapes sampled in discrete windows were predictive of the locus of attention for some neuronal types. These findings suggest that LFP wavelets are a useful proxy for local network activity influencing spike generation, and changes in LFP wavelet shape are predictive of the focus of attention.


Sign in / Sign up

Export Citation Format

Share Document