Methods for studying the neural basis of voluntary behavior, part II: wavelet decompositions and other joint time-frequency analyses of local field potentials

Author(s):  
R. Hermer-Vazquez ◽  
L. Hermer-Vazquez ◽  
J.K. Chapin
2007 ◽  
Vol 8 (3) ◽  
pp. 165-171 ◽  
Author(s):  
Asok K. Sen ◽  
Jonathan O. Dostrovsky

Using a continuous wavelet transform we have detected the presence of intermittency in the beta oscillations of the local field potentials (LFPs) that were recorded from the subthalamic nucleus (STN) of patients with Parkinson's disease. The intermittent behavior was identified by plotting the wavelet power spectrum of the LFP signal on a time–frequency plane. We also computed the temporal variations of scale-averaged wavelet power and wavelet entropy (WE). An intermittent pattern is characterized by large amounts of power over very short periods of time separated by almost quiescent periods. Time-localized changes in WE further support the evidence of intermittency. The cause and significance of the intermittent beta activity are presently unclear. It may be due to complex interactions of the cortico-basal-ganglia networks converging at the STN level.


2021 ◽  
Vol 17 (9) ◽  
pp. e1008100
Author(s):  
Daril E. Brown ◽  
Jairo I. Chavez ◽  
Derek H. Nguyen ◽  
Adam Kadwory ◽  
Bradley Voytek ◽  
...  

Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.


2020 ◽  
Author(s):  
Daril E. Brown ◽  
Jairo I. Chavez ◽  
Derek H. Nguyen ◽  
Adam Kadwory ◽  
Bradley Voytek ◽  
...  

AbstractNeuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity typically focuses on patterns of sequential bursting in small carefully identified subsets of single neurons in the HVC population. Much less is known about population dynamics beyond the scale of individual neurons. There is a rich history of using local field potentials (LFP), to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time and have been used to study and decode complex motor behaviors, such as human speech. Here we characterize LFP signals in the putative HVC of freely behaving male zebra finches during song production, to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates that LFP is a useful signal for studying motor control in songbirds. Surprisingly, the time frequency structure of putative HVC LFP is qualitatively similar to well established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight to common computational principles for learning and/or generating complex motor-vocal behaviors.Author SummaryVocalizations, such as speech and song, are a motor process that requires the coordination of several muscle groups receiving instructions from specific brain regions. In songbirds, HVC is a premotor brain region required for singing and it is populated by a set of neurons that fire sparsely during song. How HVC enables song generation is not well understood. Here we describe network activity in putative HVC that precedes the initiation of each vocal element during singing. This network activity can be used to predict both the identity of each vocal element (syllable) and when it will occur during song. In addition, this network activity is similar to activity that has been documented in human, non-human primate, and mammalian premotor regions tied to muscle movements. These similarities add to a growing body of literature that finds parallels between songbirds and humans in respect to the motor control of vocal organs. Given the similarities of the songbird and human motor-vocal systems these results suggest that the songbird model could be leveraged to accelerate the development of clinically translatable speech prosthesis.


2020 ◽  
Vol 31 (1) ◽  
pp. 169-183
Author(s):  
Aravind Krishna ◽  
Seiji Tanabe ◽  
Adam Kohn

Abstract The neural basis of perceptual decision making has typically been studied using measurements of single neuron activity, though decisions are likely based on the activity of large neuronal ensembles. Local field potentials (LFPs) may, in some cases, serve as a useful proxy for population activity and thus be useful for understanding the neural basis of perceptual decision making. However, little is known about whether LFPs in sensory areas include decision-related signals. We therefore analyzed LFPs recorded using two 48­electrode arrays implanted in primary visual cortex (V1) and area V4 of macaque monkeys trained to perform a fine orientation discrimination task. We found significant choice information in low (0–30 Hz) and higher (70–500 Hz) frequency components of the LFP, but little information in gamma frequencies (30–70 Hz). Choice information was more robust in V4 than V1 and stronger in LFPs than in simultaneously measured spiking activity. LFP-based choice information included a global component, common across electrodes within an area. Our findings reveal the presence of robust choice-related signals in the LFPs recorded in V1 and V4 and suggest that LFPs may be a useful complement to spike-based analyses of decision making.


Sign in / Sign up

Export Citation Format

Share Document