scholarly journals Mind reading of the proteins: Deep-learning to forecast molecular dynamics

2020 ◽  
Author(s):  
Chitrak Gupta ◽  
John Kevin Cava ◽  
Daipayan Sarkar ◽  
Eric Wilson ◽  
John Vant ◽  
...  

AbstractMolecular dynamics (MD) simulations have emerged to become the back-bone of today’s computational biophysics. Simulation tools such as, NAMD, AMBER and GROMACS have accumulated more than 100,000 users. Despite this remarkable success, now also bolstered by compatibility with graphics processor units (GPUs) and exascale computers, even the most scalable simulations cannot access biologically relevant timescales - the number of numerical integration steps necessary for solving differential equations in a million-to-billion-dimensional space is computationally in-tractable. Recent advancements in Deep Learning has made it such that patterns can be found in high dimensional data. In addition, Deep Learning have also been used for simulating physical dynamics. Here, we utilize LSTMs in order to predict future molecular dynamics from current and previous timesteps, and examine how this physics-guided learning can benefit researchers in computational biophysics. In particular, we test fully connected Feed-forward Neural Networks, Recurrent Neural Networks with LSTM / GRU memory cells with TensorFlow and PyTorch frame-works trained on data from NAMD simulations to predict conformational transitions on two different biological systems. We find that non-equilibrium MD is easier to train and performance improves under the assumption that each atom is independent of all other atoms in the system. Our study represents a case study for high-dimensional data that switches stochastically between fast and slow regimes. Applications of resolving these sets will allow real-world applications in the interpretation of data from Atomic Force Microscopy experiments.

2021 ◽  
pp. 1-12
Author(s):  
Jian Zheng ◽  
Jianfeng Wang ◽  
Yanping Chen ◽  
Shuping Chen ◽  
Jingjin Chen ◽  
...  

Neural networks can approximate data because of owning many compact non-linear layers. In high-dimensional space, due to the curse of dimensionality, data distribution becomes sparse, causing that it is difficulty to provide sufficient information. Hence, the task becomes even harder if neural networks approximate data in high-dimensional space. To address this issue, according to the Lipschitz condition, the two deviations, i.e., the deviation of the neural networks trained using high-dimensional functions, and the deviation of high-dimensional functions approximation data, are derived. This purpose of doing this is to improve the ability of approximation high-dimensional space using neural networks. Experimental results show that the neural networks trained using high-dimensional functions outperforms that of using data in the capability of approximation data in high-dimensional space. We find that the neural networks trained using high-dimensional functions more suitable for high-dimensional space than that of using data, so that there is no need to retain sufficient data for neural networks training. Our findings suggests that in high-dimensional space, by tuning hidden layers of neural networks, this is hard to have substantial positive effects on improving precision of approximation data.


Author(s):  
Jian Zheng ◽  
Jianfeng Wang ◽  
Yanping Chen ◽  
Shuping Chen ◽  
Jingjin Chen ◽  
...  

Author(s):  
Parul Agarwal ◽  
Shikha Mehta

Subspace clustering approaches cluster high dimensional data in different subspaces. It means grouping the data with different relevant subsets of dimensions. This technique has become very effective as a distance measure becomes ineffective in a high dimensional space. This chapter presents a novel evolutionary approach to a bottom up subspace clustering SUBSPACE_DE which is scalable to high dimensional data. SUBSPACE_DE uses a self-adaptive DBSCAN algorithm to perform clustering in data instances of each attribute and maximal subspaces. Self-adaptive DBSCAN clustering algorithms accept input from differential evolution algorithms. The proposed SUBSPACE_DE algorithm is tested on 14 datasets, both real and synthetic. It is compared with 11 existing subspace clustering algorithms. Evaluation metrics such as F1_Measure and accuracy are used. Performance analysis of the proposed algorithms is considerably better on a success rate ratio ranking in both accuracy and F1_Measure. SUBSPACE_DE also has potential scalability on high dimensional datasets.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Fuding Xie ◽  
Yutao Fan ◽  
Ming Zhou

Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of reduced dimensionality. This paper introduces a dimensionality reduction technique by weighted connections between neighborhoods to improveK-Isomap method, attempting to preserve perfectly the relationships between neighborhoods in the process of dimensionality reduction. The validity of the proposal is tested by three typical examples which are widely employed in the algorithms based on manifold. The experimental results show that the local topology nature of dataset is preserved well while transforming dataset in high-dimensional space into a new dataset in low-dimensionality by the proposed method.


2004 ◽  
Vol 13 (2) ◽  
pp. 105-119 ◽  
Author(s):  
Kian-Lee Tan ◽  
Cui Yu ◽  
St�phane Bressan ◽  
Beng Chin Ooi

Sign in / Sign up

Export Citation Format

Share Document