scholarly journals Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations

2020 ◽  
Author(s):  
Elliott Rees ◽  
Hugo D. J. Creeth ◽  
Hai-Gwo Hwu ◽  
Wei J. Chen ◽  
Ming Tsuang ◽  
...  

AbstractGenes enriched for rare disruptive coding variants in schizophrenia overlap those in which disruptive mutations are associated with neurodevelopmental disorders (NDDs), particularly autism spectrum disorders and intellectual disability. However, it is unclear whether this implicates the same specific variants, or even variants with the same functional effects on shared risk genes. Here, we show that de novo mutations in schizophrenia are generally of the same functional category as those that confer risk for NDDs, and that the specific de novo mutations in NDDs are enriched in schizophrenia. These findings indicate that, in part, NDDs and schizophrenia have shared molecular aetiology, and therefore likely overlapping pathophysiology. We also observe pleiotropic effects for variants known to be pathogenic for several syndromic developmental disorders, suggesting that schizophrenia should be included among the phenotypes associated with these mutations. Collectively, our findings support the hypothesis that at least some forms of schizophrenia lie within a continuum of neurodevelopmental disorders.

2020 ◽  
Author(s):  
Elliott Rees ◽  
Hugo Creeth ◽  
Hai-Gwo Hwu ◽  
Wei Chen ◽  
Ming Tsuang ◽  
...  

Abstract Genes enriched for rare disruptive coding variants in schizophrenia overlap those in which disruptive mutations are associated with neurodevelopmental disorders (NDDs), particularly autism spectrum disorders and intellectual disability. However, it is unclear whether this implicates the same specific variants, or even variants with the same functional effects on shared risk genes. Here, we show that de novo mutations in schizophrenia are generally of the same functional category as those that confer risk for NDDs, and that the specific de novo mutations in NDDs are enriched in schizophrenia. These findings indicate that, in part, NDDs and schizophrenia have shared molecular aetiology, and therefore likely overlapping pathophysiology. We also observe pleiotropic effects for variants known to be pathogenic for several syndromic developmental disorders, suggesting that schizophrenia should be included among the phenotypes associated with these mutations. Collectively, our findings support the hypothesis that at least some forms of schizophrenia lie within a continuum of neurodevelopmental disorders.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elliott Rees ◽  
Hugo D. J. Creeth ◽  
Hai-Gwo Hwu ◽  
Wei J. Chen ◽  
Ming Tsuang ◽  
...  

AbstractPeople with schizophrenia are enriched for rare coding variants in genes associated with neurodevelopmental disorders, particularly autism spectrum disorders and intellectual disability. However, it is unclear if the same changes to gene function that increase risk to neurodevelopmental disorders also do so for schizophrenia. Using data from 3444 schizophrenia trios and 37,488 neurodevelopmental disorder trios, we show that within shared risk genes, de novo variants in schizophrenia and neurodevelopmental disorders are generally of the same functional category, and that specific de novo variants observed in neurodevelopmental disorders are enriched in schizophrenia (P = 5.0 × 10−6). The latter includes variants known to be pathogenic for syndromic disorders, suggesting that schizophrenia be included as a characteristic of those syndromes. Our findings imply that, in part, neurodevelopmental disorders and schizophrenia have shared molecular aetiology, and therefore likely overlapping pathophysiology, and support the hypothesis that at least some forms of schizophrenia lie on a continuum of neurodevelopmental disorders.


Author(s):  
Shuyun Chen ◽  
Sixian Zhao ◽  
Christina Dalman ◽  
Håkan Karlsson ◽  
Renee Gardner

Abstract Background Maternal diabetes has been associated with a risk of neurodevelopmental disorders (NDDs) in offspring, though the common co-occurrence of autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) and intellectual disability (ID) is rarely considered, nor is the potential for confounding by shared familial factors (e.g. genetics). Methods This population-based cohort study used data from Psychiatry Sweden, a linkage of Swedish national registers, to follow 2 369 680 individuals born from 1987 to 2010. We used population-averaged logit models to examine the association between exposure to maternal type 1 diabetes mellitus (T1DM), pre-gestational type 2 diabetes mellitus (T2DM) or gestational diabetes mellitus (GDM), and odds of NDDs in offspring. Subgroup analysis was then performed to investigate the timings of GDM diagnosis during pregnancy and its effect on the odds of NDDs in offspring. We compared these results to models considering paternal lifetime T1DM and T2DM as exposures. Results Overall, 45 678 individuals (1.93%) were diagnosed with ASD, 20 823 (0.88%) with ID and 102 018 (4.31%) with ADHD. All types of maternal diabetes were associated with odds of NDDs, with T2DM most strongly associated with any diagnosis of ASD (odds ratioadjusted 1.37, 95% confidence interval 1.03–1.84), ID (2.09, 1.53–2.87) and ADHD (1.43, 1.16–1.77). Considering common co-morbid groups, the associations were strongest between maternal diabetes and diagnostic combinations that included ID. Paternal T1DM and T2DM diagnoses were also associated with offspring NDDs, but these associations were weaker than those with maternal diabetes. Diagnosis of GDM between 27 and 30 weeks of gestation was generally associated with the greatest risk of NDDs in offspring, with the strongest associations for outcomes that included ID. Conclusion The association of maternal diabetes with NDDs in offspring varies depending on the co-morbid presentation of the NDDs, with the greatest odds associated with outcomes that included ID. Results of paternal-comparison studies suggest that the above associations are likely to be partly confounded by shared familial factors, such as genetic liability.


2016 ◽  
Author(s):  
Tarjinder Singh ◽  
James T. R. Walters ◽  
Mandy Johnstone ◽  
David Curtis ◽  
Jaana Suvisaari ◽  
...  

AbstractBy meta-analyzing rare coding variants in whole-exome sequences of 4,264 schizophrenia cases and 9,343 controls, de novo mutations in 1,077 trios, and array-based copy number variant calls from 6,882 cases and 11,255 controls, we show that individuals with schizophrenia carry a significant burden of rare damaging variants in a subset of 3,230 “highly constrained” genes previously identified as having near-complete depletion of protein truncating variants. Furthermore, rare variant enrichment analyses demonstrate that this burden is concentrated in known autism spectrum disorder risk genes, genes diagnostic of severe developmental disorders, and the autism-implicated sets of promoter targets of CHD8, and mRNA targets of FMRP. We further show that schizophrenia patients with intellectual disability have a greater enrichment of rare damaging variants in highly constrained genes and developmental disorder genes, but that a weaker but significant enrichment exists throughout the larger schizophrenia population. Combined, our results demonstrate that schizophrenia risk loci of large effect across a range of variant types implicate a common set of genes shared with broader neurodevelopmental disorders, suggesting a path forward in identifying additional risk genes in psychiatric disorders and further supporting a neurodevelopmental etiology to the pathogenesis of schizophrenia.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Ludmila Kousoulidou ◽  
Maria Moutafi ◽  
Paola Nicolaides ◽  
Stavros Hadjiloizou ◽  
Christos Christofi ◽  
...  

Autism spectrum disorders (ASDs) comprise a distinct entity of neurodevelopmental disorders with a strong genetic component. Despite the identification of several candidate genes and causative genomic copy number variations (CNVs), the majority of ASD cases still remain unresolved. We have applied microarray-based comparative genomic hybridization (array-CGH) using Agilent 400K custom array in the first Cyprus population screening for identification of ASD-associated CNVs. A cohort of 50 ASD patients (G1), their parents (G2), 50 ethnically matched normal controls (G3), and 80 normal individuals having children with various developmental and neurological conditions (G4) were tested. As a result, 14 patients were found to carry 20 potentially causative aberrations, two of which werede novo. Comparison of the four population groups revealed an increased rate of rare disease-associated variants in normal parents of children with autism. The above data provided additional evidence, supporting the complexity of ASD aetiology in comparison to other developmental disorders involving cognitive impairment. Furthermore, we have demonstrated the rationale of a more targeted approach combining accurate clinical description with high-resolution population-oriented genomic screening for defining the role of CNVs in autism and identifying meaningful associations on the molecular level.


Author(s):  
Sébastien Delhaye ◽  
Barbara Bardoni

AbstractPhosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer’s disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence. In addition, to highlight the role of several PDEs in normal and pathological neurodevelopment, we focused here on the deregulation of cAMP and/or cGMP in Down Syndrome, Fragile X Syndrome, Rett Syndrome, and intellectual disability associated with the CC2D1A gene.


2011 ◽  
Vol 19 (01) ◽  
pp. 113-125 ◽  
Author(s):  
LEJUN GONG ◽  
XIAO SUN ◽  
DONGKE JIANG ◽  
SHENGTAO GONG

Autism spectrum disorders (ASD) represent a group of developmental disorders with strong genetic underpinnings. To explore the genetic complexity of ASD, we developed AutMiner (), a public web-portal for the collection of genes linked to ASD, and the implementation of an autism-centre network. AutMiner extracts candidate genes associated with ASD using text mining from 9276 abstracts. Compared to other recent systems, gene entries are richer to provide a reference for clinical geneticists. AutMiner also constructs ASD-related network consisting of autism-gene network and gene-gene network. To the best of our knowledge, this is the first web example of ASD-related network. The major focus of AutMiner is to offer a valuable reference tool for clinical geneticists in establishing and implementing effective genetic screening programmes for those patients with ASD.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
K Rönö ◽  
E Rissanen ◽  
C Bergh ◽  
U B Wennerholm ◽  
S Opdahl ◽  
...  

Abstract Study question Does the risk of neurodevelopmental disorders differ between singletons born after various assisted reproductive techniques (ART) and spontaneous conception (SC) until young adulthood? Summary answer ART children had a slightly increased rate of learning and motor functioning disorders, autism spectrum disorders (ASD), and ADHD and conduct disorders. What is known already Studies on the impact of ART on offspring have reported both increased risk and comparable incidences of neurodevelopmental disorders between ART and SC offspring. The most studied neurodevelopmental disorders with ART are autism spectrum disorders (ASD.) There is, however, no consensus on the risk of ASD for ART children. The risk for other neurodevelopmental disorders, like attention-deficit hyperactivity disorders (ADHD) or tic disorder among ART children, is also a debated issue, as studies are scarce. Study design, size, duration A Nordic register-based cohort study including all singleton live births (N = 5 076 444) after ART (n = 116 909) or SC (n = 4 959 535) between 1995 and 2014 in Denmark and Finland, 1995 and 2015 in Sweden; and 2005 and 2015 in Norway. Children with intellectual disability (ICD-10: F70-F79) are excluded. The children are followed up to young adulthood (the year 2014 in Denmark and Finland, and 2015 in Norway and Sweden). Participants/materials, setting, methods Offspring outcomes were defined as following ICD-10 diagnoses: learning and motor functioning disorders (F80-83), ASD (F84), ADHD and conduct disorders (F90-F92), and tic disorders/Tourette (F95). We calculated crude and adjusted hazard ratios (HR) for neurodevelopmental diagnoses using Cox regression. Adjustments were made for the country, maternal age at the delivery, parity, smoking, and maternal psychiatric morbidity. Main results and the role of chance The cumulative incidences of neurodevelopmental disorders in the cohort were 1.74% for F90-F92, 1.40% for F80-83, 0.66% for F84, and 0.22% for F95. In crude Cox-regression ART children had an increased likelihood during the follow-up of being diagnosed with F84 (HR 1.12 [95% CI 1.04-1.21]) and F95 (HR 1.21 [95% CI 1.06-1.38]), but not with F80-83 (HR 1.01 [95% CI 0.96-1.07]) or F90-92 (HR 0.82 [95% CI 0.77-0.86]). After adjustments the likelihood was increased for F80-83 (HR 1.20 [95% CI 1.13-1.27]), F84 (HR 1.12 [95% CI 1.03-1.24]), and F90-92 (HR 1.09 [95% CI 1.04-1.19]), but nor for F95 (HR 1.13 [95% CI 0.99-1.30]). After adjustments, intracytoplasmic sperm injection children compared with in vitro fertilization children had similar likelihood during follow-up for F80-83 (1.06 [95% CI 0.89–1.25]), for F84 (HR 0.92 [95% CI 0.76–1.11]), for F90-92 (HR 0.96 [95% CI 0.83–1.12]), and for F95 (HR 1.16 [95% CI 0.83–1.63]). After adjustments, frozen embryo transfer children compared with fresh embryo transfer children had similar likelihood during follow-up for F80-83 (HR 1.11 [95% CI 0.90–1.37]), F84 (HR 0.98 [95% CI 0.76–1.27]), F90-92 (HR 0.96 [95% CI 0.78–1.19]), and F95 (HR 0.83 [95% CI 0.51–1.35]). Limitations, reasons for caution There may be residual confounding by unknown or unmeasured confounders. We lack information on possible confounders like the reason and length of infertility, maternal substance use other than self-reported smoking status, paternal age, and parental somatic morbidity. Additional limitations are differences in registration practice and data availability between study countries. Wider implications of the findings This is the largest singleton cohort and the first multinational study on the risk for neurodevelopmental disorders among ART children. While the rate of some neurodevelopmental disorders was increased among ART children, the absolute risk was moderate. The type of ART did not associate with the incidence of neurodevelopmental disorders. Trial registration number ISRCTN11780826


Sign in / Sign up

Export Citation Format

Share Document