array cgh
Recently Published Documents


TOTAL DOCUMENTS

1095
(FIVE YEARS 77)

H-INDEX

72
(FIVE YEARS 3)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Somprakash Dhangar ◽  
Purvi Panchal ◽  
Jagdeeshwar Ghatanatti ◽  
Jitendra Suralkar ◽  
Anjali Shah ◽  
...  

Abstract Background Oculocutaneous albinism (OCA) is an autosomal recessive disorder characterized by hypo-pigmentation of skin, hair, and eyes. The OCA clinical presentation is due to a deficiency of melanin biosynthesis. Intellectual disability (ID) in OCA cases is a rare clinical presentation and appropriate diagnosis of ID is challenging through clinical examination. We report an Indian family with a rare co-inheritance of OCA1B and ID due to a novel TYR gene variant and chromosomal copy number variations. Methods We have done a study on three siblings (2 males and 1 female) of a family where all of them presented with hypopigmented skin, hair and eyes. The male children and their father was affected with ID. Targeted exome sequencing and multiplex ligation-dependent probe amplification analysis were carried out to identify the OCA1B and ID associated genomic changes. Further Array-CGH was performed using SurePrint G3 Human CGH + SNP, 8*60 K array. Results A rare homozygous deletion of exon 3 in TYR gene causing OCA1B was identified in all three children. The parents were found to be heterozygous carriers. The Array-CGH analysis revealed paternally inherited heterozygous deletion(1.9 MB) of 15q11.1-> 15q11.2 region in all three children. Additionally, paternally inherited heterozygous deletion(2.6 MB)of 10q23.2-> 10q23.31 region was identified in the first male child; this may be associated with ID as the father and the child both presented with ID. While the 2nd male child had a denovo duplication of 13q31.1-> 13q31.3 chromosomal region. Conclusion A rare homozygous TYR gene exon 3 deletion in the present study is the cause of OCA1B in all three children, and the additional copy number variations are associated with the ID. The study highlights the importance of combinational genetic approaches for diagnosing two different co-inherited disorders (OCA and ID). Hence, OCA cases with additional clinical presentation need to be studied in-depth forthe appropriate management of the disease.


Medicina ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 15
Author(s):  
Chung-Lin Lee ◽  
Chih-Kuang Chuang ◽  
Ru-Yi Tu ◽  
Huei-Ching Chiu ◽  
Yun-Ting Lo ◽  
...  

Background and Objectives: Chromosomal microarray offers superior sensitivity for identification of submicroscopic copy number variants (CNVs) and is recommended for the initial genetic testing of patients with autism spectrum disorder (ASD). This study aims to determine the diagnostic yield of array comparative genomic hybridization (array-CGH) in ASD patients from a cohort of Chinese patients in Taiwan. Materials and Methods: Enrolled in this study were 80 ASD children (49 males and 31 females; 2–16 years old) followed up at Taipei MacKay Memorial Hospital between January 2010 and December 2020. The genomic DNA extracted from blood samples was analyzed by array-CGH via the Affymetrix GeneChip Genome-Wide Human single nucleotide polymorphism (SNP) and NimbleGen International Standards for Cytogenomic Arrays (ISCA) Plus Cytogenetic Arrays. The CNVs were classified into five groups: pathogenic (pathologic variant), likely pathogenic (potential pathologic variant), likely benign (potential normal genomic variant), benign (normal genomic variant), and uncertain clinical significance (variance of uncertain significance), according to the American College of Medical Genetics (ACMG) guidelines. Results: We identified 47 CNVs, 31 of which in 27 patients were clinically significant. The overall diagnostic yield was 33.8%. The most frequently clinically significant CNV was 15q11.2 deletion, which was present in 4 (5.0%) patients. Conclusion: In this study, a satisfactory diagnostic yield of array-CGH was demonstrated in a Taiwanese ASD patient cohort, supporting the clinical usefulness of array-CGH as the first-line testing of ASD in Taiwan.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2021
Author(s):  
Katarzyna Kowalczyk ◽  
Magdalena Bartnik-Głaska ◽  
Marta Smyk ◽  
Izabela Plaskota ◽  
Joanna Bernaciak ◽  
...  

Congenital heart defects (CHDs) appear in 8–10 out of 1000 live born newborns and are one of the most common causes of deaths. In fetuses, the congenital heart defects are found even 3–5 times more often. Currently, microarray comparative genomic hybridization (array CGH) is recommended by worldwide scientific organizations as a first-line test in the prenatal diagnosis of fetuses with sonographic abnormalities, especially cardiac defects. We present the results of the application of array CGH in 484 cases with prenatally diagnosed congenital heart diseases by fetal ultrasound scanning (256 isolated CHD and 228 CHD coexisting with other malformations). We identified pathogenic aberrations and likely pathogenic genetic loci for CHD in 165 fetuses and 9 copy number variants (CNVs) of unknown clinical significance. Prenatal array-CGH is a useful method allowing the identification of all unbalanced aberrations (number and structure) with a much higher resolution than the currently applied traditional assessment techniques karyotype. Due to this ability, we identified the etiology of heart defects in 37% of cases.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1957
Author(s):  
Roxana Popescu ◽  
Mihaela Grămescu ◽  
Lavinia Caba ◽  
Monica-Cristina Pânzaru ◽  
Lăcrămioara Butnariu ◽  
...  

We present a complex chromosomal anomaly identified using cytogenetic and molecular methods. The child was diagnosed during the neonatal period with a multiple congenital anomalies syndrome characterized by: flattened occipital region; slight turricephaly; tall and broad forehead; hypertelorism; deep-set eyes; down slanting and short palpebral fissures; epicanthic folds; prominent nose with wide root and bulbous tip; microstomia; micro-retrognathia, large, short philtrum with prominent reliefs; low set, prominent ears; and congenital heart disease. The GTG banding karyotype showed a 46,XY,der(10)(10pter→10q26.2::4q26→4qter) chromosomal formula and his mother presented an apparently balanced reciprocal translocation: 46,XX,t(4;10)(q26;q26.2). The chromosomal anomalies of the child were confirmed by MLPA, and supplementary investigation discovered a quadruplication of the 4q35.2 region. The mother has a triplication of the same chromosomal fragment (4q35.2). Using array-CGH, we described the anomalies completely. Thus, the boy has a 71,057 kb triplication of the 4q26–q35.2 region, a 562 kb microdeletion in the 10q26.3 region, and a 795 kb quadruplication of the 4q35.2 region, while the mother presents a 795 kb triplication of the 4q35.2 region. Analyzing these data, we consider that the boy’s phenotype is influenced only by the 4q partial trisomy. We compare our case with similar cases, and we review the literature data.


2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Mariarita Brancaccio ◽  
Arturo Cesaro ◽  
Emanuele Monda ◽  
Valeria D'Argenio ◽  
Giorgio Casaburi ◽  
...  

Abstract Aims Laboratory medicine along with genetic investigations are taking on an increasingly important role in monitoring athlete’s health conditions. Acute or intense exercise can lead to metabolic imbalances, muscle injuries, or can point up cardiovascular disorders. Methods and results This study aimed to monitor the health status of a basketball player, through an integrated approach including biochemical and genetic investigations and advanced imaging techniques, to shed light on the causes of recurrent syncope he experienced during exercise. Biochemical analyses showed that the athlete had abnormal iron, ferritin, and bilirubin levels. Coronary computed tomographic angiography highlighted the presence of an intramyocardial bridge, suggesting this may be the cause of the observed syncopes. The athlete was excluded from competitive activity. To understand if this cardiac malformation could be caused by an inherited genetic condition, both array-CGH and whole exome sequencing were performed. Array-CGH showed two intronic deletions involving MACROD2 and COMMD10 genes, which could be related to the congenital heart defect; the whole exome sequencing highlighted the genotype compatible with the Gilbert syndrome. However, no clear pathogenic mutations related to the patient’s cardiological phenotype were detected, even after applying machine learning methods. Conclusions This case highlights the importance and the need to provide exhaustive personalized diagnostic work-up for the athletes to cover the cause of their malaise, safeguarding their health. This multidisciplinary approach can be useful to create ad personam training and treatments, thus avoiding the appearance of diseases and injuries which, if underestimated, can become irreversible disorders and sometimes can lead to the death of the athlete.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2144
Author(s):  
Mariarita Brancaccio ◽  
Cristina Mennitti ◽  
Arturo Cesaro ◽  
Emanuele Monda ◽  
Valeria D’Argenio ◽  
...  

Laboratory medicine, along with genetic investigations in sports medicine, is taking on an increasingly important role in monitoring athletes’ health conditions. Acute or intense exercise can result in metabolic imbalances, muscle injuries or reveal cardiovascular disorders. This study aimed to monitor the health status of a basketball player with an integrated approach, including biochemical and genetic investigations and advanced imaging techniques, to shed light on the causes of recurrent syncope he experienced during exercise. Biochemical analyses showed that the athlete had abnormal iron, ferritin and bilirubin levels. Coronary Computed Tomographic Angiography highlighted the presence of an intramyocardial bridge, suggesting this may be the cause of the observed syncopes. The athlete was excluded from competitive activity. In order to understand if this cardiac malformation could be caused by an inherited genetic condition, both array-CGH and whole exome sequencing were performed. Array-CGH showed two intronic deletions involving MACROD2 and COMMD10 genes, which could be related to a congenital heart defect; whole exome sequencing highlighted the genotype compatible with Gilbert syndrome. However, no clear pathogenic mutations related to the patient’s cardiological phenotype were detected, even after applying machine learning methods. This case report highlights the importance and the need to provide exhaustive personalized diagnostic work up for the athletes in order to cover the cause of their malaise and for safeguarding their health. This multidisciplinary approach can be useful to create ad personam training and treatments, thus avoiding the appearance of diseases and injuries which, if underestimated, can become irreversible disorders and sometimes can result in the death of the athlete.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guanting Lu ◽  
Qiongling Peng ◽  
Lianying Wu ◽  
Jian Zhang ◽  
Liya Ma

Abstract Background Coffin–Siris syndrome (CSS) is a multiple malformation syndrome characterized by intellectual disability associated with coarse facial features, hirsutism, sparse scalp hair, and hypoplastic or absent fifth fingernails or toenails. CSS represents a small group of intellectual disability, and could be caused by at least twelve genes. The genetic background is quite heterogenous, making it difficult for clinicians and genetic consultors to pinpoint the exact disease types. Methods Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing (WES) were applied for three trios affected with intellectual disability and clinical features similar with those of Coffin–Siris syndrome. Sanger sequencing was used to verify the detected single-nucleotide variants (SNVs). Results All of the three cases were female with normal karyotypes of 46, XX, born of healthy, non-consanguineous parents. A 6q25 microdeletion (arr[hg19]6q25.3(155,966,487–158,803,979) × 1) (2.84 Mb) (case 1) and two loss-of-function (LoF) mutations of ARID1B [c.2332 + 1G > A in case 2 and c.4741C > T (p.Q1581X) in case 3] were identified. All of the three pathogenic abnormalities were de novo, not inherited from their parents. After comparison of publicly available microdeletions containing ARID1B, four types of microdeletions leading to insufficient production of ARID1B were identified, namely deletions covering the whole region of ARID1B, deletions covering the promoter region, deletions covering the termination region or deletions covering enhancer regions. Conclusion Here we identified de novo ARID1B mutations in three Chinese trios. Four types of microdeletions covering ARID1B were identified. This study broadens current knowledge of ARID1B mutations for clinicians and genetic consultors.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1157
Author(s):  
Martina Giambra ◽  
Eleonora Messuti ◽  
Andrea Di Cristofori ◽  
Clarissa Cavandoli ◽  
Raffaele Bruno ◽  
...  

Glioblastoma is an extremely heterogeneous disease. Treatment failure and tumor recurrence primarily reflect the presence in the tumor core (TC) of the glioma stem cells (GSCs), and secondly the contribution, still to be defined, of the peritumoral brain zone (PBZ). Using the array-CGH platform, we deepened the genomic knowledge about the different components of GBM and we identified new specific biomarkers useful for new therapies. We firstly investigated the genomic profile of 20 TCs of GBM; then, for 14 cases and 7 cases, respectively, we compared these genomic profiles with those of the related GSC cultures and PBZ biopsies. The analysis on 20 TCs confirmed the intertumoral heterogeneity and a high percentage of copy number alterations (CNAs) in GBM canonical pathways. Comparing the genomic profiles of 14 TC-GSC pairs, we evidenced a robust similarity among the two samples of each patient. The shared imbalanced genes are related to the development and progression of cancer and in metabolic pathways, as shown by bioinformatic analysis using DAVID. Finally, the comparison between 7 TC-PBZ pairs leads to identifying PBZ-unique alterations, which it has been identified, require further investigation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4638-4638
Author(s):  
Ann-Cathrine Berking ◽  
Tim Flaadt ◽  
Yvonne Lisa Behrens ◽  
Andreas Reiter ◽  
Ayami Yoshimi ◽  
...  

Abstract Introduction: MLN-eo associated with gene rearrangements of PDGFRA, PDGFRB, FGFR1, or PCM1-JAK2 are rare haematological neoplasms primarily affecting adults. Eosinophilia commonly occurs but may also be absent. The heterogeneous clinical picture and the rarity of the disease, especially in children, may delay an early diagnosis. MLN-eo are characterized by constitutive tyrosine kinase activity due to gene fusions. It is thus of prognostic importance to obtain a prompt genetic diagnosis to start a specific therapy. Here we report two female paediatric cases of MLN-eo (6 months and 13 years old at initial diagnosis). Methods: In both cases, bone marrow morphology, karyotyping, fluorescence in-situ hybridization analysis (FISH) via break apart probes (PDGFRB (5q32), FGFR1 (8p12), JAK2 (9p24), FIP1L1/CHIC2/PDGFRA (4q12)), targeted RNA sequencing and in one case array CGH were performed. Results: The 6 months old girl was admitted to hospital with a 3-month history of rash and leukocytosis with eosinophilia. The skin showed multiple purpuric lesions (Fig 1 A/B). Mild splenomegaly was noted. White blood count (WBC) was 48000/µl with 38% eosinophils. Bone marrow trephine showed hypercellular marrow with mild fibrosis and eosinophilia without increase in blasts. Biopsy of a skin nodule displayed a histological pattern of interface dermatitis with eosinophilic infiltrate. (Fig 1 C/D). Fluorescence R-banding showed a normal karyotype (46,XX) (Fig. 2 A). However, FISH and array CGH detected an interstitial deletion of 5` PDGFRB (5q32) in 61 % of interphase nuclei (Fig. 2 B-D). Targeted RNA sequencing (RNA-seq) confirmed, as the array CGH suggested, the suspected TNIP1/PDGFRB fusion. According to the WHO criteria, diagnosis of a myeloid neoplasia with PDGFRB rearrangement due to an interstitial deletion in 5q was made. Because of the PDGFRB rearrangement, imatinib (250 mg/m²/d) therapy was started. Leukocyte and eosinophil counts normalized within 4 days without signs of tumour lysis. Skin lesions disappeared within 2 weeks. After 4 weeks, the dose was reduced to 100 mg/m² 3 x/week. Now at 14 months of age, peripheral counts continue to be normal and the fusion transcript is not detectable in the peripheral blood. The 13 years old girl was admitted with severe tachypnoea due to pleural effusions, hepatosplenomegaly and lymphadenopathy. Echocardiography showed endocarditis, left ventricular fibrosis and mitral insufficiency. WBC was 112170 /µL with 39% eosinophils. Bone marrow aspirate and trephine showed a feature of myeloproliferative neoplasia (MPN) with eosinophilia. The karyotype was normal. A rearrangement involving the FGFR1 locus was detected by FISH (Fig. 3 B/C). Splitting of the probe signals indicated an inversion on chromosome 8. Targeted RNA sequencing revealed a PCM1-FGFR1 fusion transcript. Diagnosis of a MLN-eo with FGFR1 rearrangement and evidence of a PCM1-FGFR1 fusion, most likely caused by an inversion on chromosome 8, was made. The girl stabilized after therapy with prednisone, vincristine, hydroxycarbamide and anti-IL-5 antibody. Peripheral blood counts normalized within 2 weeks. Eight weeks after initial diagnosis she presented with signs of a transient ischemic attack, respiratory distress and arterial hypotension. At that time WBC was 139000/µl with 53% myeloid blasts and 5% eosinophils. Trisomy 8 was detected in all metaphases and 88% of cells in FISH (Fig.3 A-C). Diagnosis of a progression to a myeloid blast phase was made. Induction chemotherapy (cytarabine, idarubicin, etoposidphosphate) was administered. On day +22 bone marrow aspirates showed the persisting picture of MPN. Preparations for hematopoietic stem cell transplantation (HSCT) and ponatinib therapy were begun, but cardiac and respiratory insufficiency that developed during chemotherapy were fatal. Conclusion: As these two cases have shown, standard cytogenetic and molecular methods may not be sufficient to diagnose MLN-eo due to cytogenetically cryptic aberrations. Thus, genetic diagnosis must be precise and quick (e.g. break apart FISH, targeted RNA-seq) in order to initiate adequate therapies with tyrosine kinase inhibitors or HSCT. Patients with rearrangements of PDGFRA or PDGFRB usually respond well to imatinib, whereas patients with FGFR1 and JAK2 gene fusions exhibit more aggressive diseases with variable sensitivity to tyrosine kinase inhibitors and have an early indication for HSCT. Figure 1 Figure 1. Disclosures Reiter: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses, Research Funding; Blueprint Medicines: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Incyte: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; AOP Orphan Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; Deciphera: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Abbvie: Membership on an entity's Board of Directors or advisory committees; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support.


2021 ◽  
Vol 28 ◽  
Author(s):  
Shang-Jun Yin ◽  
Guo-Ying Qian ◽  
Jun-Mo Yang ◽  
Jinhyuk Lee ◽  
Yong-Doo Park

Background: We investigated melanogenesis- and anti-apoptosis-related melanoma factors in melanoma cells (TXM1, TXM18, A375P, and A375SM). Objective: To find melanoma associated hub factor, high-throughput screening-based techniques integrating with bioinformatics were investigated. Methods: Array CGH analysis was conducted with a commercial system. Total genomic DNAs prepared individually from each cell line with control DNA were properly labeled with Cy3-dCTP and Cy5-dCTP and hybridizations and subsequently performed data treatment by the log2 green (G; test) to red (R; reference) fluorescence ratios (G/R). Gain or loss of copy number was judged by spots with log2-transformed ratios. PPI mapping analysis of detected candidate genes based on the array CGH results was conducted using the human interactome in the STRING database. Energy minimization and a short molecular dynamics (MD) simulation using the implicit solvation model in CHARMM were performed to analyze the interacting residues between YWHAZ and YWHAB. Results: Three genes (BMP-4, BFGF, LEF-1) known to be involved in melanogenesis were found to lose chromosomal copy numbers, and Chr. 6q23.3 was lost in all tested cell lines. Ten hub genes (CTNNB1, PEX13, PEX14, PEX5, IFNG, EXOSC3, EXOSC1, EXOSC8, UBC, and PEX10) were predicted to be functional interaction factors in the network of the 6q23.3 locus. The apoptosis-associated genes E2F1, p50, BCL2L1, and BIRC7 gained, and FGF2 lost chromosomal copy numbers in the tested melanoma cell lines. YWHAB, which gained chromosomal copy numbers, was predicted to be the most important hub protein in melanoma cells. Molecular dynamics simulations for binding YWHAB and YWHAZ were conducted, and the complex was predicted to be energetically and structurally stable through its 3 hydrogen-bond patterns. The number of interacting residues is 27. Conclusion: Our study compares genome-wide screening interactomics predictions for melanoma factors and offers new information for understanding melanogenesis- and anti-apoptosis-associated mechanisms in melanoma. Especially, YWHAB was newly detected as a core factor in melanoma cells.


Sign in / Sign up

Export Citation Format

Share Document