scholarly journals Sensitivity to Envelope Interaural Time Difference: Models of Diverse LSO Neurons

2020 ◽  
Author(s):  
Andrew Brughera ◽  
Jimena A. Ballestero ◽  
David McAlpine

AbstractA potential auditory spatial cue, the envelope interaural time difference (ITDENV) is encoded in the lateral superior olive (LSO) of the brainstem. Here, we explore computationally modeled LSO neurons, in reflecting behavioral sensitivity to ITDENV. Transposed tones (half-wave rectified low-frequency tones, frequency-limited, then multiplying a high-frequency carrier) stimulate a bilateral auditory-periphery model driving each model LSO neuron, where electrical membrane impedance low-pass filters the inputs driven by amplitude-modulated sound, limiting the upper modulation rate for ITDENV sensitivity. Just-noticeable differences in ITDENV for model LSO neuronal populations, each distinct to reflect the LSO range in membrane frequency response, collectively reproduce the largest variation in ITDENV sensitivity across human listeners. At each stimulus carrier frequency (4-10 kHz) and modulation rate (32-800 Hz), the top-performing model population generally reflects top-range human performance. Model neurons of each speed are the top performers for a particular range of modulation rate. Off-frequency listening extends model ITDENV sensitivity above 500-Hz modulation, as sensitivity decreases with increasing modulation rate. With increasing carrier frequency, the combination of decreased top membrane speed and decreased number of model neurons capture decreasing human sensitivity to ITDENV.

2020 ◽  
Vol 123 (2) ◽  
pp. 695-706
Author(s):  
Lu Luo ◽  
Na Xu ◽  
Qian Wang ◽  
Liang Li

The central mechanisms underlying binaural unmasking for spectrally overlapping concurrent sounds, which are unresolved in the peripheral auditory system, remain largely unknown. In this study, frequency-following responses (FFRs) to two binaurally presented independent narrowband noises (NBNs) with overlapping spectra were recorded simultaneously in the inferior colliculus (IC) and auditory cortex (AC) in anesthetized rats. The results showed that for both IC FFRs and AC FFRs, introducing an interaural time difference (ITD) disparity between the two concurrent NBNs enhanced the representation fidelity, reflected by the increased coherence between the responses evoked by double-NBN stimulation and the responses evoked by single NBNs. The ITD disparity effect varied across frequency bands, being more marked for higher frequency bands in the IC and lower frequency bands in the AC. Moreover, the coherence between IC responses and AC responses was also enhanced by the ITD disparity, and the enhancement was most prominent for low-frequency bands and the IC and the AC on the same side. These results suggest a critical role of the ITD cue in the neural segregation of spectrotemporally overlapping sounds. NEW & NOTEWORTHY When two spectrally overlapped narrowband noises are presented at the same time with the same sound-pressure level, they mask each other. Introducing a disparity in interaural time difference between these two narrowband noises improves the accuracy of the neural representation of individual sounds in both the inferior colliculus and the auditory cortex. The lower frequency signal transformation from the inferior colliculus to the auditory cortex on the same side is also enhanced, showing the effect of binaural unmasking.


2009 ◽  
Vol 101 (5) ◽  
pp. 2348-2361 ◽  
Author(s):  
Katrin Vonderschen ◽  
Hermann Wagner

Barn owls process sound-localization information in two parallel pathways, the midbrain and the forebrain pathway. Exctracellular recordings of neural responses to auditory stimuli from far advanced stations of these pathways, the auditory arcopallium in the forebrain and the external nucleus of the inferior colliculus in the midbrain, demonstrated that the representations of interaural time difference and frequency in the forebrain pathway differ from those in the midbrain pathway. Specifically, low-frequency representation was conserved in the forebrain pathway, while it was lost in the midbrain pathway. Variation of interaural time difference yielded symmetrical tuning curves in the midbrain pathway. By contrast, the typical forebrain-tuning curve was asymmetric with a steep slope crossing zero time difference and a less-steep slope toward larger contralateral time disparities. Low sound frequencies contributed sensitivity to contralateral leading sounds underlying these asymmetries, whereas high frequencies enhanced the steepness of slopes at small interaural time differences. Furthermore, the peaks of time-disparity tuning curves were wider in the forebrain than in the midbrain. The distribution of the steepest slopes of best interaural time differences in the auditory arcopallium, but not in the external nucleus of the inferior colliculus, was centered at zero time difference. The distribution observed in the auditory arocpallium is reminiscent of the situation observed in small mammals. We speculate that the forebrain representation may serve as a population code supporting fine discrimination of central interaural time differences and coarse indication of laterality of a stimulus for large interaural time differences.


2021 ◽  
pp. 108331
Author(s):  
Kongyan Li ◽  
Vani G. Rajendran ◽  
Ambika Prasad Mishra ◽  
Chloe H.K. Chan ◽  
Jan W.H. Schnupp

2010 ◽  
Vol 104 (4) ◽  
pp. 1946-1954 ◽  
Author(s):  
Martin Singheiser ◽  
Brian J. Fischer ◽  
Hermann Wagner

The functional role of the low-frequency range (<3 kHz) in barn owl hearing is not well understood. Here, it was tested whether cochlear delays could explain the representation of interaural time difference (ITD) in this frequency range. Recordings were obtained from neurons in the core of the central nucleus of the inferior colliculus. The response of these neurons varied with the ITD of the stimulus. The response peak shared by all neurons in a dorsoventral penetration was called the array-specific ITD and served as criterion for the representation of a given ITD in a neuron. Array-specific ITDs were widely distributed. Isolevel frequency response functions obtained with binaural, contralateral, and ispilateral stimulation exhibited a clear response peak and the accompanying frequency was called the best frequency. The data were tested with respect to predictions of a model, the stereausis model, assuming cochlear delays as source for the best ITD of a neuron. According to this model, different cochlear delays determined by mismatches between the ipsilateral and contralateral best frequencies are the source for the ITD in a binaural neuron. The mismatch should depend on the best frequency and the best ITD. The predictions of the stereausis model were not fulfilled in the low best-frequency neurons analyzed here. It is concluded that cochlear delays are not responsible for the representation of best ITD in the barn owl.


Sign in / Sign up

Export Citation Format

Share Document