peripheral auditory system
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 3)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Magdalena Solyga ◽  
Tania Rinaldi Barkat

Offset responses in auditory processing appear after a sound terminates. They arise in neuronal circuits within the peripheral auditory system, but their role in the central auditory system remains unknown. Here, we ask what the behavioral relevance of cortical offset responses is and what circuit mechanisms drive them. At the perceptual level, our results reveal that experimentally minimizing auditory cortical offset responses decreases the mouse performance to detect sound termination, assigning a behavioral role to offset responses. By combining in vivo electrophysiology in the auditory cortex and thalamus of awake mice, we also demonstrate that cortical offset responses are not only inherited from the periphery but also amplified and generated de novo. Finally, we show that offset responses code more than silence, including relevant changes in sound trajectories. Together, our results reveal the importance of cortical offset responses in encoding sound termination and detecting changes within temporally discontinuous sounds crucial for speech and vocalization.


2021 ◽  
Vol 9 ◽  
Author(s):  
Darlene R. Ketten ◽  
James A. Simmons ◽  
Hiroshi Riquimaroux ◽  
Andrea Megela Simmons

The similarity of acoustic tasks performed by odontocete (toothed whale) and microchiropteran (insectivorous bat) biosonar suggests they may have common ultrasonic signal reception and processing mechanisms. However, there are also significant media and prey dependent differences, notably speed of sound and wavelengths in air vs. water, that may be reflected in adaptations in their auditory systems and peak spectra of out-going signals for similarly sized prey. We examined the anatomy of the peripheral auditory system of two species of FM bat (big brown bat Eptesicus fuscus; Japanese house bat Pipistrellus abramus) and two toothed whales (harbor porpoise Phocoena phocoena; bottlenose dolphin Tursiops truncatus) using ultra high resolution (11–100 micron) isotropic voxel computed tomography (helical and microCT). Significant differences were found for oval and round window location, cochlear length, basilar membrane gradients, neural distributions, cochlear spiral morphometry and curvature, and basilar membrane suspension distributions. Length correlates with body mass, not hearing ranges. High and low frequency hearing range cut-offs correlate with basilar membrane thickness/width ratios and the cochlear radius of curvature. These features are predictive of high and low frequency hearing limits in all ears examined. The ears of the harbor porpoise, the highest frequency echolocator in the study, had significantly greater stiffness, higher basal basilar membrane ratios, and bilateral bony support for 60% of the basilar membrane length. The porpoise’s basilar membrane includes a “foveal” region with “stretched” frequency representation and relatively constant membrane thickness/width ratio values similar to those reported for some bat species. Both species of bats and the harbor porpoise displayed unusual stapedial input locations and low ratios of cochlear radii, specializations that may enhance higher ultrasonic frequency signal resolution and deter low frequency cochlear propagation.


2021 ◽  
pp. 1-11
Author(s):  
Chaoyong Tian ◽  
Dingjun Zha

<b><i>Background:</i></b> The auditory system processes how we hear and understand sounds within the environment. It comprises both peripheral and central structures. Sympathetic nervous system projections are present throughout the auditory system. The function of sympathetic fibers in the cochlea has not been studied extensively due to the limited number of direct projections in the auditory system. Nevertheless, research on adrenergic and noradrenergic regulation of the cochlea and central auditory system is growing. With the rapid development of neuroscience, auditory central regulation is an extant topic of focus in research on hearing. <b><i>Summary:</i></b> As such, understanding sympathetic nervous system regulation of auditory function is a growing topic of interest. Herein, we review the distribution and putative physiological and pathological roles of sympathetic nervous system projections in hearing. <b><i>Key Messages:</i></b> In the peripheral auditory system, the sympathetic nervous system regulates cochlear blood flow, modulates cochlear efferent fibers, affects hair cells, and influences the habenula region. In central auditory pathways, norepinephrine is essential for plasticity in the auditory cortex and affects auditory cortex activity. In pathological states, the sympathetic nervous system is associated with many hearing disorders. The mechanisms and pathways of sympathetic nervous system modulation of auditory function is still valuable for us to research and discuss.


2021 ◽  
pp. 133-135
Author(s):  
Badariya M. ◽  
Madhavan B. ◽  
Afreen Najeeb C.H. ◽  
Pooja Surendran

Objectives: Association of high frequency hearing loss/minor damage in peripheral auditory system in continuous chronic tinnitus with normal PTA is well established.The purpose of the study was to verify whether this finding is true for intermittent unilateral or bilateral tinnitus patients with normal PTA using EHF audiometry and conventional DPOAEs. Materials and method:This study was conducted on 45 normal hearing adults between the age ranges of 18-30 years. Among them 30 adults comprised of study group with intermittent tinnitus which varies in laterality.Tinnitus evaluation was done on these population followed by THI administration. DPOAE and EHF audiometry was completed on all subjects after conventional hearing assessment program. Result and Discussion:Kruskal Wallis H test & Wilcoxon signed rank test was used to compare OAE amplitude & EHF thresholds.Spearman's correlation was used to evaluate the correlation between DPOAE amplitude with EHF threshold. Reduced hearing sensitivity in the extended high frequency region may be early predictor of outer hair cell dysfunction in the most basal area.Findings of this study suggest that intermittent tinnitus may also lead to subtle lesion at the basal region of cochlea which would result in a significant hearing loss with continuous tinnitus in future. Conclusion:Intermittent tinnitus may increase the fragility of peripheral auditory system which may lead to permanent lesions and would be evident as elevated thresholds in conventional PTA.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 193
Author(s):  
Bruno Jactat

Current approaches to listening are built on standard cognitive science, which considers the brain as the locus of all cognitive activity. This work aims to investigate listening as phenomena occurring within a brain, a body (embodiment), and an environment (situatedness). Drawing on insights from physiology, acoustics, and audiology, this essay presents listening as an interdependent brain-body-environment construct grounded in dynamic systems theory. Coupling, self-organization, and attractors are the central characteristics of dynamic systems. This article reviews the first of these aspects in order to develop a fuller understanding of how embodied auditory perception occurs. It introduces the mind-body problem before reviewing dynamic systems theory and exploring the notion of coupling in human hearing by way of current and original analogies drawn from engineering. It posits that the current use of the Watt governor device as an analogy for coupling is too simplistic to account for the coupling phenomena in the human ear. In light of this review of the physiological characteristics of the peripheral auditory system, coupling in hearing appears more variegated than originally thought and accounts for the diversity of perception among individuals, a cause for individual variance in how the mind emerges, which in turn affects academic performance. Understanding the constraints and affordances of the physical ear with regard to incoming sound supports the embodied listening paradigm.


Author(s):  
Prawin Kumar ◽  
Niraj Kumar Singh ◽  
Kumari Apeksha ◽  
Vipin Ghosh ◽  
Raveendran Rajesh Kumar ◽  
...  

Abstract Introduction Diabetes mellitus is a metabolic disease associated with a rise in the level of blood glucose. Individuals with diabetes mellitus are more likely to develop hearing loss, tinnitus, and dizziness due to macro- and microvascular complications. The extent to which auditory and vestibular functions are impaired in individuals with type-2 diabetes mellitus is still under debate. Objective To systematically review studies focusing on auditory and vestibular functions in individuals with type-2 diabetes mellitus. Data Synthesis A search was conducted in the PubMed, MedlinePlus, Ingenta Connect and Google Scholar databases for articles published until June 2019. A total of 15,980 articles were primarily retrieved, 33 of which were shortlisted based on the inclusion criteria set by the investigators for the systematic review. Out of 33 full-length articles, 26 evaluated the functioning of the auditory system, while 7 evaluated the functioning of the vestibular system. Most studies related to auditory functioning reported a significant effect of type-2 diabetes mellitus on the peripheral auditory system, whereas studies on vestibular functioning reported no significant effect of diabetes mellitus on the functioning of the peripheral vestibular end-organ. Conclusion Overall, the results of various audiological and peripheral vestibular tests reveal distinctive peripheral and/or central auditory and vestibular end-organ impairments in individuals with type-2 diabetes mellitus.


2021 ◽  
Vol 15 ◽  
Author(s):  
Teresa Nicolson

Inherited forms of deafness account for a sizable portion of hearing loss among children and adult populations. Many patients with sensorineural deficits have pathological manifestations in the peripheral auditory system, the inner ear. Within the hearing organ, the cochlea, most of the genetic forms of hearing loss involve defects in sensory detection and to some extent, signaling to the brain via the auditory cranial nerve. This review focuses on peripheral forms of hereditary hearing loss and how these impairments can be studied in diverse animal models or patient-derived cells with the ultimate goal of using the knowledge gained to understand the underlying biology and treat hearing loss.


2021 ◽  
Author(s):  
Magdalena Sołyga ◽  
Tania Rinaldi Barkat

Offset responses in auditory processing appear after a sound terminates. They arise in neuronal circuits within the peripheral auditory system, but their role in the central auditory system remains unknown. Here we ask what the behavioural relevance of cortical offset responses is and what circuit mechanisms drive them. At the perceptual level, our results reveal that experimentally minimizing auditory cortical offset responses decreases the mouse performance to detect sound termination, assigning a behavioural role to offset responses. By combining in vivo electrophysiology in the auditory cortex and thalamus of awake mice, we also demonstrate that cortical offset responses are not only inherited from the periphery but also amplified and generated de novo. Finally, we show that offset responses code more than silence, including relevant changes in sound trajectories. Together, our results reveal the importance of cortical offset responses in encoding sound termination and detecting changes within temporally discontinuous sounds crucial for speech and vocalization.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 193
Author(s):  
Bruno Jactat

Current approaches to listening are built on standard cognitive science, which considers the brain as the locus of all cognitive activity. This work aims to investigate listening as phenomena occurring within a brain, a body (embodiment), and an environment (situatedness). Drawing on insights from physiology, acoustics, and audiology, this essay presents listening as an interdependent brain-body-environment construct grounded in dynamic systems theory. Coupling, self-organization, and attractors are the central characteristics of dynamic systems. This article reviews the first of these aspects in order to develop a fuller understanding of how embodied listening occurs. It introduces the mind-body problem before reviewing dynamic systems theory and exploring the notion of coupling in human hearing by way of current and original analogies drawn from engineering. It posits that the current use of the Watt governor device as an analogy for coupling is too simplistic to account for the coupling phenomena in the human ear. In light of this review of the physiological characteristics of the peripheral auditory system, coupling in hearing appears more variegated than originally thought and accounts for the diversity of perception among individuals, a cause for individual variance in how the mind emerges, which in turn affects academic performance. Understanding the constraints and affordances of the physical ear with regard to incoming sound supports the embodied listening paradigm.


2021 ◽  
Vol 95 (3) ◽  
pp. 1003-1021
Author(s):  
Erin A. Greguske ◽  
Jordi Llorens ◽  
Sonja J. Pyott

AbstractThe peripheral auditory and vestibular systems rely on sensorineural structures that are vulnerable to ototoxic agents that cause hearing loss and/or equilibrium deficits. Although attention has focused on hair cell loss as the primary pathology underlying ototoxicity, evidence from the peripheral vestibular system indicates that hair cell loss during chronic exposure is preceded by synaptic uncoupling from the neurons and is potentially reversible. To determine if synaptic pathology also occurs in the peripheral auditory system, we examined the extent, time course, and reversibility of functional and morphological alterations in cochleae from mice exposed to 3,3′-iminodipropionitrile (IDPN) in drinking water for 2, 4 or 6 weeks. Functionally, IDPN exposure caused progressive high- to low-frequency hearing loss assessed by measurement of auditory brainstem response wave I absolute thresholds and amplitudes. The extent of hearing loss scaled with the magnitude of vestibular dysfunction assessed behaviorally. Morphologically, IDPN exposure caused progressive loss of outer hair cells (OHCs) and synapses between the inner hair cells (IHCs) and primary auditory neurons. In contrast, IHCs were spared from ototoxic damage. Importantly, hearing loss consistent with cochlear synaptopathy preceded loss of OHCs and synapses and, moreover, recovered if IDPN exposure was stopped before morphological pathology occurred. Our observations suggest that synaptic uncoupling, perhaps as an early phase of cochlear synaptopathy, also occurs in the peripheral auditory system in response to IDPN exposure. These findings identify novel mechanisms that contribute to the earliest stages of hearing loss in response to ototoxic agents and possibly other forms of acquired hearing loss.


Sign in / Sign up

Export Citation Format

Share Document