scholarly journals Exome sequencing identifies rare coding variants in 10 genes which confer substantial risk for schizophrenia

Author(s):  
Tarjinder Singh ◽  
Timothy Poterba ◽  
David Curtis ◽  
Huda Akil ◽  
Mariam Al Eissa ◽  
...  

By meta-analyzing the whole-exomes of 24,248 cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in ten genes as conferring substantial risk for schizophrenia (odds ratios 3 - 50, P < 2.14 x 10^-6), and 32 genes at a FDR < 5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure, and function of the synapse. The associations of NMDA receptor subunit GRIN2A and AMPA receptor subunit GRIA3 provide support for the dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We find significant evidence for an overlap of rare variant risk between schizophrenia, autism spectrum disorders (ASD), and severe neurodevelopmental disorders (DD/ID), supporting a neurodevelopmental etiology for schizophrenia. We show that protein-truncating variants in GRIN2A, TRIO, and CACNA1G confer risk for schizophrenia whereas specific missense mutations in these genes confer risk for DD/ID. Nevertheless, few of the strongly associated schizophrenia genes appear to confer risk for DD/ID. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk, suggesting that common and rare genetic risk factors at least partially converge on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, implying that more schizophrenia risk genes await discovery using this approach.

2020 ◽  
Author(s):  
Elliott Rees ◽  
Hugo Creeth ◽  
Hai-Gwo Hwu ◽  
Wei Chen ◽  
Ming Tsuang ◽  
...  

Abstract Genes enriched for rare disruptive coding variants in schizophrenia overlap those in which disruptive mutations are associated with neurodevelopmental disorders (NDDs), particularly autism spectrum disorders and intellectual disability. However, it is unclear whether this implicates the same specific variants, or even variants with the same functional effects on shared risk genes. Here, we show that de novo mutations in schizophrenia are generally of the same functional category as those that confer risk for NDDs, and that the specific de novo mutations in NDDs are enriched in schizophrenia. These findings indicate that, in part, NDDs and schizophrenia have shared molecular aetiology, and therefore likely overlapping pathophysiology. We also observe pleiotropic effects for variants known to be pathogenic for several syndromic developmental disorders, suggesting that schizophrenia should be included among the phenotypes associated with these mutations. Collectively, our findings support the hypothesis that at least some forms of schizophrenia lie within a continuum of neurodevelopmental disorders.


2020 ◽  
Author(s):  
Elliott Rees ◽  
Hugo D. J. Creeth ◽  
Hai-Gwo Hwu ◽  
Wei J. Chen ◽  
Ming Tsuang ◽  
...  

AbstractGenes enriched for rare disruptive coding variants in schizophrenia overlap those in which disruptive mutations are associated with neurodevelopmental disorders (NDDs), particularly autism spectrum disorders and intellectual disability. However, it is unclear whether this implicates the same specific variants, or even variants with the same functional effects on shared risk genes. Here, we show that de novo mutations in schizophrenia are generally of the same functional category as those that confer risk for NDDs, and that the specific de novo mutations in NDDs are enriched in schizophrenia. These findings indicate that, in part, NDDs and schizophrenia have shared molecular aetiology, and therefore likely overlapping pathophysiology. We also observe pleiotropic effects for variants known to be pathogenic for several syndromic developmental disorders, suggesting that schizophrenia should be included among the phenotypes associated with these mutations. Collectively, our findings support the hypothesis that at least some forms of schizophrenia lie within a continuum of neurodevelopmental disorders.


2007 ◽  
Vol 562 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Fraser Murray ◽  
Neil J. Harrison ◽  
Sarah Grimwood ◽  
Linda J. Bristow ◽  
Peter H. Hutson

2021 ◽  
Author(s):  
Greta Pintacuda ◽  
Yu-Han H Hsu ◽  
Kalliopi Tsafou ◽  
Ka Wan Li ◽  
Jacqueline M Martin ◽  
...  

Sequencing studies of autism spectrum disorders (ASDs) have identified numerous risk genes with enriched expression in the human brain, but it is still unclear how these genes converge into cell type-specific networks and how their encoded proteins mechanistically contribute to ASDs. To address this question, we performed brain cell type-specific interaction proteomics to build a protein-protein interaction network for 13 ASD risk genes in human excitatory neurons derived from iPS cells. The network contains many (>90%) reproducible interactions not reported in the literature and is enriched for transcriptionally perturbed genes observed in layer 2/3 cortical neurons of ASD patients, indicating that it can be explored for ASD-relevant biological discovery. We leveraged the network dataset to show that the brain-specific isoform of ANK2 is important for its interactions with synaptic proteins and characterized a PTEN-AKAP8L interaction that influences neuronal growth through the mTOR pathway. The IGF2BP1-3 complex emerges as a point of convergence in the network, and we showed that this complex is involved in a transcriptional circuit concentrating both common and rare variant risk of ASDs. Finally, we found the network itself enriched for ASD rare variant risk, indicating that it can complement genetic datasets for prioritizing additional risk genes. Our findings establish brain cell type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in ASDs and illustrate how both individual and convergent interactions lead to biological insights into the disease.


1998 ◽  
Vol 95 (23) ◽  
pp. 13777-13782 ◽  
Author(s):  
K. Kask ◽  
D. Zamanillo ◽  
A. Rozov ◽  
N. Burnashev ◽  
R. Sprengel ◽  
...  

2020 ◽  
Vol 29 (4) ◽  
pp. 1783-1797
Author(s):  
Kelly L. Coburn ◽  
Diane L. Williams

Purpose Neurodevelopmental processes that begin during gestation and continue throughout childhood typically support language development. Understanding these processes can help us to understand the disruptions to language that occur in neurodevelopmental conditions, such as autism spectrum disorder (ASD). Method For this tutorial, we conducted a focused literature review on typical postnatal brain development and structural and functional magnetic resonance imaging, diffusion tensor imaging, magnetoencephalography, and electroencephalography studies of the neurodevelopmental differences that occur in ASD. We then integrated this knowledge with the literature on evidence-based speech-language intervention practices for autistic children. Results In ASD, structural differences include altered patterns of cortical growth and myelination. Functional differences occur at all brain levels, from lateralization of cortical functions to the rhythmic activations of single neurons. Neuronal oscillations, in particular, could help explain disrupted language development by elucidating the timing differences that contribute to altered functional connectivity, complex information processing, and speech parsing. Findings related to implicit statistical learning, explicit task learning, multisensory integration, and reinforcement in ASD are also discussed. Conclusions Consideration of the neural differences in autistic children provides additional scientific support for current recommended language intervention practices. Recommendations consistent with these neurological findings include the use of short, simple utterances; repetition of syntactic structures using varied vocabulary; pause time; visual supports; and individualized sensory modifications.


Sign in / Sign up

Export Citation Format

Share Document