ampa receptor subunit
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 25)

H-INDEX

46
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Niels Reinders ◽  
Sophie van der Spek ◽  
Remco V. Klaassen ◽  
Karin Koymans ◽  
Ka Wan Li ◽  
...  

Soluble oligomeric amyloid-β (Aβ) is a prime suspect to cause cognitive deficits in Alzheimer's disease and weakens synapses by removing AMPA-type glutamate receptors (AMPARs). We show that synapses of CA1 pyramidal neurons become vulnerable to Aβ when they express AMPAR subunit GluA3. We found that Aβ-oligomers reduce the levels of GluA3 immobilized at spines, indicating they deplete GluA3-containing AMPARs from synapses. These Aβ-driven effects critically depended on the PDZ-binding motif of GluA3. When GluA3 was expressed with a single amino acid mutation in its PDZ-binding motif that prevents GRIP binding, it did not end up at spines and Aβ failed to trigger synaptic depression. GluA3 with a different point mutation in the PDZ-motif that leaves GRIP-binding intact but prevents its endocytosis, was present at spines in normal amounts but was fully resistant to effects of Aβ. Our data indicate that Aβ-mediated synaptic depression requires the removal of GluA3 from synapses. We propose that GRIP-detachment from GluA3 is a critical early step in the cascade of events through which Aβ accumulation causes a loss of synapse.


2021 ◽  
Vol 14 ◽  
Author(s):  
Ali Harb ◽  
Nils Vogel ◽  
Ali Shaib ◽  
Ute Becherer ◽  
Dieter Bruns ◽  
...  

Different families of auxiliary subunits regulate the function and trafficking of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the central nervous system. While a facilitatory role of auxiliary subunits in ER export and forward trafficking of newly synthesized AMPA receptors is firmly established, it is unclear whether auxiliary subunits also control endosomal receptor turnover in dendrites. Here, we manipulated the composition of AMPA receptor complexes in cultured hippocampal neurons by overexpression of two auxiliary subunits, transmembrane AMPAR regulatory protein (TARP) γ-8 or cysteine knot AMPAR-modulating protein (CKAMP) 44a, and monitored dendritic receptor cycling in live-cell imaging experiments. Receptor surface delivery was assayed using a modified AMPA receptor subunit carrying the pH-dependent fluorophore superecliptic pHluorin (SEP-GluA1), which regains its fluorescence during receptor exocytosis, when transiting from the acidic lumen of transport organelles to the neutral extracellular medium. Strikingly, we observed a dramatic reduction in the spontaneous fusion rate of AMPA receptor-containing organelles in neurons overexpressing either type of auxiliary subunit. An analysis of intracellular receptor distribution also revealed a decreased receptor pool in dendritic recycling endosomes, suggesting that incorporation of TARPγ-8 or CKAMP44a in receptor complexes generally diminishes cycling through the endosomal compartment. To directly analyze dendritic receptor turnover, we also generated a new reporter by N-terminal fusion of a self-labeling HaloTag to an AMPA receptor subunit (HaloTag-GluA1), which allows for selective, irreversible staining of surface receptors. Pulse chase-experiments with HaloTag-GluA1 indeed demonstrated that overexpression of TARPγ-8 or CKAMP44a reduces the constitutive internalization rate of surface receptors at extrasynaptic but not synaptic sites. Thus, our data point to a yet unrecognized regulatory function of TARPγ-8 and CKAMP44a, by which these structurally unrelated auxiliary subunits delay local recycling and increase surface lifetime of extrasynaptic AMPA receptors.


2021 ◽  
Author(s):  
Matheus F. Sathler ◽  
Latika Khatri ◽  
Jessica P. Roberts ◽  
Isabella G. Schmidt ◽  
Anastasiya Zaytseva ◽  
...  

Synaptic strength is altered during synaptic plasticity by controlling the number of AMPA receptors (AMPARs) at excitatory synapses. During long-term potentiation and synaptic up-scaling, AMPARs are accumulated at synapses to increase synaptic strength. Neuronal activity leads to phosphorylation of AMPAR subunit GluA1 and subsequent elevation of GluA1 surface expression, either by an increase in receptor forward trafficking to the synaptic membrane or a decrease in receptor internalization. However, the molecular pathways underlying GluA1 phosphorylation-induced elevation of surface AMPAR expression are not completely understood. Here, we employ fluorescence recovery after photobleaching (FRAP) to reveal that phosphorylation of GluA1 Serine 845 (S845) predominantly plays a role in receptor internalization than forward trafficking during synaptic plasticity. Notably, internalization of AMPARs depends upon the clathrin adaptor, AP2, which recruits cargo proteins into endocytic clathrin coated pits. In fact, we further reveal that an increase in GluA1 S845 phosphorylation by two distinct forms of synaptic plasticity diminishes the binding of the AP2 adaptor, reducing internalization, and resulting in elevation of GluA1 surface expression. We thus demonstrate a mechanism of GluA1 phosphorylation-regulated clathrin-mediated internalization of AMPARs.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Inés González-Calvo ◽  
Keerthana Iyer ◽  
Mélanie Carquin ◽  
Anouar Khayachi ◽  
Fernando A Giuliani ◽  
...  

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.


2021 ◽  
Vol 32 (2) ◽  
pp. 204-217
Author(s):  
Joseph M. Austen ◽  
Corran Pickering ◽  
Rolf Sprengel ◽  
David J. Sanderson

Theories of learning differ in whether they assume that learning reflects the strength of an association between memories or symbolic encoding of the statistical properties of events. We provide novel evidence for symbolic encoding of informational variables by demonstrating that sensitivity to time and number in learning is dissociable. Whereas responding in normal mice was dependent on reinforcement rate, responding in mice that lacked the GluA1 AMPA receptor subunit was insensitive to reinforcement rate and, instead, dependent on the number of times a cue had been paired with reinforcement. This suggests that GluA1 is necessary for weighting numeric information by temporal information in order to calculate reinforcement rate. Sample sizes per genotype varied between seven and 23 across six experiments and consisted of both male and female mice. The results provide evidence for explicit encoding of variables by animals rather than implicit encoding via variations in associative strength.


2020 ◽  
Vol 6 (47) ◽  
pp. eabd2163
Author(s):  
Youngseob Jung ◽  
Ji-Young Seo ◽  
Hye Guk Ryu ◽  
Do-Yeon Kim ◽  
Kyung-Ha Lee ◽  
...  

The AMPA receptor subunit GluA1 is essential for induction of synaptic plasticity. While various regulatory mechanisms of AMPA receptor expression have been identified, the underlying mechanisms of GluA1 protein synthesis are not fully understood. In neurons, axonal and dendritic mRNAs have been reported to be translated in a cap-independent manner. However, molecular mechanisms of cap-independent translation of synaptic mRNAs remain largely unknown. Here, we show that GluA1 mRNA contains an internal ribosome entry site (IRES) in the 5′UTR. We also demonstrate that heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 interacts with GluA1 mRNA and mediates internal initiation of GluA1. Brain-derived neurotrophic factor (BDNF) stimulation increases IRES-mediated GluA1 translation via up-regulation of HNRNP A2/B1. Moreover, BDNF-induced GluA1 expression and dendritic spine density were significantly decreased in neurons lacking hnRNP A2/B1. Together, our data demonstrate that IRES-mediated translation of GluA1 mRNA is a previously unidentified feature of local expression of the AMPA receptor.


2020 ◽  
Author(s):  
Tarjinder Singh ◽  
Timothy Poterba ◽  
David Curtis ◽  
Huda Akil ◽  
Mariam Al Eissa ◽  
...  

By meta-analyzing the whole-exomes of 24,248 cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in ten genes as conferring substantial risk for schizophrenia (odds ratios 3 - 50, P < 2.14 x 10^-6), and 32 genes at a FDR < 5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure, and function of the synapse. The associations of NMDA receptor subunit GRIN2A and AMPA receptor subunit GRIA3 provide support for the dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We find significant evidence for an overlap of rare variant risk between schizophrenia, autism spectrum disorders (ASD), and severe neurodevelopmental disorders (DD/ID), supporting a neurodevelopmental etiology for schizophrenia. We show that protein-truncating variants in GRIN2A, TRIO, and CACNA1G confer risk for schizophrenia whereas specific missense mutations in these genes confer risk for DD/ID. Nevertheless, few of the strongly associated schizophrenia genes appear to confer risk for DD/ID. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk, suggesting that common and rare genetic risk factors at least partially converge on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, implying that more schizophrenia risk genes await discovery using this approach.


Sign in / Sign up

Export Citation Format

Share Document