scholarly journals SunRISE: long-term imaging of individual mRNA molecules in living cells

2020 ◽  
Author(s):  
Yue Guo ◽  
Robin E. C. Lee

AbstractSingle-cell imaging of individual mRNAs has revealed core mechanisms of the central dogma. However, most approaches require cell fixation or have limited sensitivity for live-cell applications. Here, we describe SunRISE (SunTag-based Reporter for Imaging Signal Enriched mRNA), a computationally and experimentally optimized approach for unambiguous single-mRNA detection in living cells. We demonstrate SunRISE with long-term epifluorescence imaging, using translational stress to track mRNA phase separation and recovery from cytosolic droplets.

2011 ◽  
Vol 8 (S4) ◽  
pp. S30-S35 ◽  
Author(s):  
Timm Schroeder

2017 ◽  
Vol 20 (10) ◽  
pp. 1371-1376 ◽  
Author(s):  
Petra Füger ◽  
Jasmin K Hefendehl ◽  
Karthik Veeraraghavalu ◽  
Ann-Christin Wendeln ◽  
Christine Schlosser ◽  
...  

Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1406-1414 ◽  
Author(s):  
Dirk Loeffler ◽  
Timm Schroeder

Abstract Cells and the molecular processes underlying their behavior are highly dynamic. Understanding these dynamic biological processes requires noninvasive continuous quantitative single-cell observations, instead of population-based average or single-cell snapshot analysis. Ideally, single-cell dynamics are measured long-term in vivo; however, despite progress in recent years, technical limitations still prevent such studies. On the other hand, in vitro studies have proven to be useful for answering long-standing questions. Although technically still demanding, long-term single-cell imaging and tracking in vitro have become valuable tools to elucidate dynamic molecular processes and mechanisms, especially in rare and heterogeneous populations. Here, we review how continuous quantitative single-cell imaging of hematopoietic cells has been used to solve decades-long controversies. Because aberrant cell fate decisions are at the heart of tissue degeneration and disease, we argue that studying their molecular dynamics using quantitative single-cell imaging will also improve our understanding of these processes and lead to new strategies for therapies.


Author(s):  
UKM Teichgräber ◽  
JG Pinkernelle ◽  
F Neumann ◽  
T Benter ◽  
H Bruhn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document