scholarly journals Diel Investments in Phytoplankton Metabolite Production Influenced by Associated Heterotrophic Bacteria

2020 ◽  
Author(s):  
Mario Uchimiya ◽  
William Schroer ◽  
Malin Olofsson ◽  
Arthur S. Edison ◽  
Mary Ann Moran

AbstractOrganic carbon transfer between photoautotrophic and heterotrophic microbes in the surface ocean mediated through metabolites dissolved in seawater is a central but poorly understood process in the global carbon cycle. In a synthetic microbial community in which diatom extracellular release of organic molecules sustained growth of a co-cultured bacterium, metabolite transfer was assessed over two diel cycles based on per cell quantification of phytoplankton endometabolites and bacterial transcripts. Of 31 phytoplankton endometabolites identified and classified into temporal abundance patterns, eight could be matched to patterns of bacterial transcripts mediating their uptake and catabolism. A model simulating the coupled endometabolite-transcription relationships hypothesized that one category of outcomes required an increase in phytoplankton metabolite synthesis in response to the presence of the bacterium. An experimental test of this hypothesis confirmed higher endometabolome accumulation in the presence of bacteria for all five compounds assigned to this category – leucine, glycerol-3-phosphate, glucose, and the organic sulfur compounds dihydroxypropanesulfonate and dimethylsulfoniopropionate. Partitioning of photosynthate into rapidly-cycling dissolved organic molecules at the expense of phytoplankton biomass production has implications for carbon sequestration in the deep ocean. That heterotrophic bacteria can impact this partitioning suggests a previously unrecognized influence on the ocean’s carbon reservoirs.Significance StatementMicrobes living in the surface ocean are critical players in the global carbon cycle, carrying out a particularly key role in the flux of carbon between the ocean and atmosphere. The release of metabolites by marine phytoplankton and their uptake by heterotrophic bacteria is one of the major routes of microbial carbon turnover. Yet the identity of these metabolites, their concentration in seawater, and the factors that affect their synthesis and release are poorly known. Here we provide experimental evidence that marine heterotrophic bacteria can affect phytoplankton production and extracellular release of metabolites. This microbial interaction has relevance for the partitioning of photosynthate between dissolved and particulate carbon reservoirs in the ocean, an important factor in oceanic carbon sequestration.

2021 ◽  
Author(s):  
Anne Kruijt ◽  
Jack Middelburg ◽  
Appy Sluijs

<p>The shelf represents a relatively small fraction of global oceanic area but plays an important role in the global carbon cycle because of high production and burial of organic matter and calcium carbonate. Biological processes on the shelf can greatly alter the partial pressure of dissolved CO2, causing disequilibrium with the atmosphere and fluxes significantly larger than those in the open ocean. Also the transport of major ions from land to open ocean is mediated by shelf processes. Available models resolving the governing processes are typically designed to simulate specific regions. Global carbon cycle models typically implement all shelf processes in one simple box. Global earth system models typically impose a flux of riverine export products from land directly into the open ocean without accounting for processes in the coastal zone. However, the global role of the coastal zone in the carbon cycle on various time scales remains poorly quantified, partly due to the large variability in continental margin environments, hampering proper understanding of past, present and future global carbon cycle dynamics.<br>We develop a new coastal zone model that links river biogeochemistry with open ocean models, focusing on the transfer of carbon. Our first approach represents a box model in which number, size and depth of boxes can be varied. We apply global fluxes of carbon into the system and include functions describing first order organic and inorganic carbon processes in each of the boxes. With this conceptual model of the coastal zone we aim to test the effect of changes in bathymetry, temperature and light attenuation on the way carbon is transferred through the coastal interface, suitable for paleo and future applications.</p>


2009 ◽  
Vol 6 (2) ◽  
pp. 3215-3235 ◽  
Author(s):  
S. Zhao ◽  
S. Liu ◽  
Z. Li ◽  
T. L. Sohl

Abstract. Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS), along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively), to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at local to global scales.


2011 ◽  
Vol 33 (3) ◽  
pp. 35-39 ◽  
Author(s):  
Mario Lebrato ◽  
Daniel O.B. Jones

With atmospheric CO2 concentrations increasing, it is vital to improve our understanding of the processes that sequester carbon, the most important being the biological pump of the world's oceans. Jellyfish might not spring to mind as major players in the global carbon cycle but the evidence of large jelly-falls on the world's deep seabeds suggests that gelatinous zooplankton have a greater role in the biological pump than we thought previously. Jellyfish blooms may be increasing and dead jellyfish may offer a rapidly accessible food source as they sink. We have developed a model to explore the remineralization of gelatinous carcasses as they sink, which is allowing us to predict the effects of jelly-falls on carbon transfer around the world.


2009 ◽  
Vol 6 (8) ◽  
pp. 1647-1654 ◽  
Author(s):  
S. Q. Zhao ◽  
S. Liu ◽  
Z. Li ◽  
T. L. Sohl

Abstract. Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS), along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively), to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at the local to global scales.


Tellus B ◽  
2009 ◽  
Vol 61 (2) ◽  
Author(s):  
Sile Li ◽  
Andrew J. Jarvis ◽  
David T. Leedal

Sign in / Sign up

Export Citation Format

Share Document