phytoplankton production
Recently Published Documents


TOTAL DOCUMENTS

514
(FIVE YEARS 71)

H-INDEX

57
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Paulina Montero ◽  
Marcelo H. Gutiérrez ◽  
Giovanni Daneri ◽  
Bárbara Jacob

Fjord ecosystems cycle and export significant amounts of carbon and appear to be extremely sensitive to climate change and anthropogenic perturbations. To identify patterns of microbial responses to ongoing natural and human-derived changes in the fjords of Chilean Patagonia, we examined the effect of organic enrichment associated with salmon aquaculture and freshening produced by glacial melting on bacterial production (BP), extracellular enzymatic activity (EEA), and community diversity of free-living bacterioplankton. We assayed the effects of salmon food-derived dissolved organic matter (SF-DOM) and meltwaters through microcosm experiments containing waters from Puyuhuapi Fjord and the proglacial fjords of the Southern Patagonia Icefield, respectively. Rates of BP and EEA were 2 times higher in the presence of SF-DOM than in controls, whereas the addition of autochthonous organic matter derived from diatoms (D-DOM) resulted in rates of BP and EEA similar to those measured in the controls. The addition of SF-DOM also reduced species richness and abundance of a significant fraction of the representative taxa of bacterioplankton of Puyuhuapi Fjord. In the proglacial fjords, bacterioplankton diversity was reduced in areas more heavily influenced by meltwaters and was accompanied by moderate positive changes in BP and EEA. Our findings strongly suggest that SF-DOM is highly reactive, promoting enhanced rates of microbial activity while could be influencing the diversity of bacterioplankton communities in Patagonian fjords with a strong salmon farming activity. These findings challenge the traditional view of phytoplankton production as the primary source of labile DOM that fuels heterotrophic activity in coastal ecosystems impacted by anthropogenic organic enrichment. Given the intensive local production of salmon, we analyze the significance of this emerging source of rich “allochthonous” organic substrates for autotrophic/heterotrophic balance, carbon exportation, and hypoxia in Patagonian fjords. The effect of human DOM enrichment can be enhanced in proglacial fjords, where progressive glacial melting exerts additional selective pressure on bacterioplankton diversity.


2022 ◽  
Vol 8 ◽  
Author(s):  
Cui-Ci Sun ◽  
Wei-Zhong Yue ◽  
You-Shao Wang ◽  
Wei-Hong He ◽  
Yi-Guo Hong ◽  
...  

Distributions of Coomassie Blue stainable particles (CSP), the sources and transports, as well as their implications for nitrogen biogeochemical cycles in the Pearl River estuary (PRE) were investigated during two cruises in August 2016 and January 2017. CSPcolor concentrations (CSP concentration determined spectrophotometrically) were 73.7–685.3 μg BSA eq L–1 [μg Bovine serum albumin (BSA) equivalent liter–1] in August 2016 and 100.6–396.4 μg BSA eq L–1 in January 2017, respectively. CSP concentrations were high in low-salinity waters (<5), and declined from the river to the middle estuary by 80% in the wet season and 55.6% in the dry season, respectively, then increased again in the lower estuary due to high primary production. CSP concentrations were mainly associated with chlorophyll a (Chl a) concentration except for the turbid mixing zone, suggesting that autochthonous phytoplankton production served as the primary source of CSP in the PRE. The concentrations of nitrogen (N) as CSP in the PRE were comparable to the nitrogen content of particulate hydrolysable amino acids (PHAA). Pictures of CSP taken by microscopy and the correlation between composition of PHAA and the ratio of Chl a/CSPcolor showed that CSP were relatively degraded due to delivery of old terrestrial protein to river section and extensive microbial degradation during mixing at the upper and middle parts of the estuary, whereas CSP in lower estuary appeared to be more labile due to higher fresh algal production. The contribution of CSP nitrogen (CSP-N) to the particulate nitrogen (PN) pool was 34.98% in summer and 30.8% in winter. The conservative estimate of CSP-N input flux in the Pearl River Delta was about 6 × 106 mol N d–1. These results suggested that CSP was a significant pool of organic nitrogen in the PRE. The study of CSP composition in terms of nitrogen provides new insight into the roles of CSP on nitrogen biogeochemical processes in the turbid and productive estuarine system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Helena Osterholz ◽  
Christian Burmeister ◽  
Susanne Busch ◽  
Madleen Dierken ◽  
Helena C. Frazão ◽  
...  

Dissolved and particulate organic carbon (DOC, POC) and nitrogen (DON, PON) constitute essential nutrient and energy sources to heterotrophic microbes in aquatic systems. Especially in the shallow coastal ocean, the concentrations are highly variable on short timescales, and cycling is heavily affected by different sources and environmental drivers. We analyzed surface water organic carbon and nitrogen concentrations determined weekly from 2010 to 2020 in the nearshore southwestern Baltic Sea (Heiligendamm, Germany) in relation to physical, chemical and biological parameters available since 1988. Mixing of low-DOC North Sea water with high-DOC Baltic Sea water, as well as in situ primary production, were confirmed as the main drivers of organic carbon and nitrogen concentrations. Tight coupling between POC, PON, chlorophyll a and phytoplankton carbon with DON seasonal dynamics corroborated the close relationship between phytoplankton production and degradation of organic nutrients with preferential remineralization of nitrogen. Significant changes in air and water temperature, salinity, and inorganic nutrients over time indicated effects of climate change and improved water quality management in the eutrophic Baltic Sea. Bulk organic nutrient concentrations did not change over time, while the salinity-corrected fraction of the DOC increased by about 0.6 μmol L–1yr–1. Concurrently, chlorophyll a and Bacillariophyceae and Cryptophyceae carbon increased, denoting a potential link to primary productivity. The high variability of the shallow system exacerbates the detection of trends, but our results emphasize the value of these extended samplings to understand coupled biogeochemical cycling of organic matter fractions and to detect trends in these important carbon reservoirs.


Author(s):  
Leah Lenoch ◽  
◽  
Paul Stumpner ◽  
Jon Burau ◽  
Luke Loken ◽  
...  

Hydrodynamics control the movement of water and material within and among habitats, where time-scales of mixing can exert bottom-up regulatory effects on aquatic ecosystems through their influence on primary production. The San Francisco Estuary (estuary) is a low-productivity ecosystem, which is in part responsible for constraining higher trophic levels, including fishes. Many research and habitat-restoration efforts trying to increase primary production have been conducted, including, as described here, a whole-ecosystem nutrient addition experiment where calcium nitrate was applied in the Sacramento River Deep Water Ship Channel (DWSC) to see if phytoplankton production could be increased and exported out of the DWSC. As an integral part of this experiment, we investigated the physical mechanisms that control mixing, and how these mechanisms affect the strength and duration of thermal stratification, which we revealed as critical for controlling phytoplankton dynamics in the relatively turbid upper DWSC. Analysis of a suite of mixing mechanisms and time-scales show that both tidal currents and wind control mixing rates and stratification dynamics in the DWSC. Longitudinal and vertical dispersion increased during periods of high wind, during which wind speed influenced dispersion more than tidal currents. Thermal stratification developed most days, which slowed vertical mixing but was rapidly broken down by wind-induced mixing. Stratification rarely persisted for longer than 24 hours, limiting phytoplankton production in the study area. The interaction between physical mechanisms that control mixing rates, mediate stratification dynamics, and ultimately limit primary production in the DWSC may be useful in informing habitat restoration elsewhere in the Delta and in other turbid aquatic environments.


2021 ◽  
Author(s):  
Ryan Heneghan ◽  
Jason Everett ◽  
Julia Blanchard ◽  
Patrick Sykes ◽  
Anthony Richardson

Abstract Although zooplankton are the primary energy pathway from phytoplankton to fish, we understand little about how climate change will modify zooplankton communities and their role in marine ecosystems. Using a trait-based marine ecosystem model resolving key zooplankton groups, we assess climate change impacts on zooplankton community composition and implications for marine food webs globally. We find that future oceans favour food webs increasingly dominated by carnivorous (chaetognaths, jellyfish and carnivorous copepods) and gelatinous filter-feeding zooplankton (larvaceans and salps). By providing a direct energetic pathway from small phytoplankton to fish, the rise of gelatinous filter-feeders largely offsets the increase in trophic steps between primary producers and fish from declining phytoplankton production and increasing carnivorous zooplankton. However, our results indicate that future fish communities face not only reduced carrying capacity from falling primary production, but also lower quality diets as environmental conditions increasingly favour gelatinous zooplankton.


2021 ◽  
Vol 13 (10) ◽  
pp. 4967-4985
Author(s):  
Francesco Mattei ◽  
Michele Scardi

Abstract. Phytoplankton primary production is a key oceanographic process. It has relationships with marine-food-web dynamics, the global carbon cycle and Earth's climate. The study of phytoplankton production on a global scale relies on indirect approaches due to the difficulties of field campaigns. Modeling approaches require in situ data for calibration and validation. In fact, the need for more phytoplankton primary-production data was highlighted several times during the last decades. Most of the available primary-production datasets are scattered in various repositories, reporting heterogeneous information and missing records. We decided to retrieve field measurements of marine phytoplankton production from several sources and create a homogeneous and ready-to-use dataset. We handled missing data and added variables related to primary production which were not present in the original datasets. Subsequently, we performed a general analysis highlighting the relationships between the variables from a numerical and an ecological perspective. Data paucity is one of the main issues hindering the comprehension of complex natural processes. We believe that an updated and improved global dataset, complemented by an analysis of its characteristics, can be of interest to anyone studying marine phytoplankton production and the processes related to it. The dataset described in this work is published in the PANGAEA repository (https://doi.org/10.1594/PANGAEA.932417) (Mattei and Scardi, 2021).


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Tao ◽  
Lixia Niu ◽  
Yanhong Dong ◽  
Tao Fu ◽  
Quansheng Lou

Nutrient enrichment and its quantitative cause-effect chains of the biogeochemical processes have scarcely been documented in the Pearl River Estuary (South China). Field investigations of nutrient samples taken between 1996 and 2018 showed significant differences in nitrogen and phosphorus with times and sites. The concentrations of DIN and DIP gradually increased over the past two decades, with good fitted linear curves (R2 = 0.31 for DIN, R2 = 0.92 for DIP); while the temporal variation in DSi was non-significant. Higher levels of nitrogen and silicate mainly appeared in the upper estuary because of the riverine influence. The phosphorus pollution was accumulated in the northeast (e.g., Shenzhen bay). The aquatic environment was highly sensitive to nutrient pollution and eutrophication risk, which accordingly corresponded to high phytoplankton production and biodiversity. Phosphorus was the limiting factor of phytoplankton growth in this estuary, and more frequently caused the eutrophication risks and blooms. The nutrient pollution was largely influenced by riverine inputs, quantified by PCA-generation, and the contributions of coastal emission and atmospheric deposition were followed. The two-end member mixing model differentiated the physical alterations from the biological activity and identified the dynamic source-sink patterns of nutrient species. Nitrogen and silicate had relatively conservative behaviors in the estuary and phosphate showed an active pattern.


2021 ◽  
Vol 49 (4) ◽  
pp. 654-662
Author(s):  
Erik Coria-Monter ◽  
Adolfo Gracia ◽  
David Alberto Salas de León ◽  
María Adela Monreal-Gómez ◽  
Elizabeth Durán-Campos

Phytoplankton is a sentinel group of organisms of climate change due to their capacity to respond to multiple stressors, so studies documenting the optimal optical conditions within the water column affecting their growth and production are imperative. As a contribution to this topic, this study report selected optical properties in deep-waters of the Gulf of Mexico by in situ measurements during summertime. A multidisciplinary research cruise was carried during August/September of 2018. A CTD instrument configured with underwater quantum and fluorescence sensors were used to acquire data of temperature, conductivity, depth, photosynthetically active radiation (PAR), and fluorescence of chlorophyll-a, which were used to determine selected optical coefficients, including the light extinction (k), the compensation light intensity (Ec), the compensation depth (Zc), the critical depth (Zcr), and the incident irradiance (E0). The Brunt-Väisälä frequency calculated from CTD data was used as a magnitude indicator of the water column stratification. The results showed a pycnocline located between 23 and 68 m depth, and favorable conditions for phytoplankton production with high values of E0 reaching 1523.4 μmol m-2 s-1, Ec values ranging from 3 to 8 μmol m-2 s-1, values of Zcr greater than Zc and maximum records of k values of 0.06. Based on multivariate statistical techniques, two zones were clearly defined. These results represent the first observational report on the optical properties in the deep region of the Gulf of Mexico. Studies on the ideal optical conditions for carrying out phytoplankton photosynthesis and their possible seasonal and interannual variability are essential to understand the processes that support the phytoplankton production, especially in regions that are characterized by their high biodiversity.


2021 ◽  
Author(s):  
Paul Bukaveckas

Abstract. Sources and transformation of C were quantified using mass balance and ecosystem metabolism data for the upper segments of the James, Pamunkey and Mattaponi Estuaries. The goal was to assess the role of external (river inputs & tidal exchange) vs. internal (metabolism) drivers in influencing the forms and fluxes of C. C forms and their response to river discharge differed among the estuaries based on their physiographic setting. The James, which receives the bulk of inputs from upland areas (Piedmont and Mountain), exhibited a higher ratio of inorganic to organic C, and larger inputs of POC. The Pamunkey and Mattaponi receive a greater proportion of inputs from lowland (Coastal Plain) areas, which were characterized by low DIC and POC, and elevated DOC. We anticipated that transport processes would dominate during colder months when discharge is elevated and metabolism is low, and that biological processes would predominate in summer, leading to attenuation of C through-puts via de-gassing of CO2. Contrary to expectations, highest retention of OC occurred during periods of high through-put, as elevated discharge resulted in greater loading and retention of POC. In summer, internal cycling of C via production and respiration was large in comparison to external forcing despite the large riverine influence in these upper estuarine segments. The estuaries were found to be net heterotrophic based on retention of OC, export of DIC, low GPP relative to ER, and a net flux of CO2 to the atmosphere. In the James, greater contributions from phytoplankton production resulted in a closer balance between GPP and ER, with autochthonous production exceeding allochthonous inputs. Combining the mass balance and metabolism data with bioenergetics provided a basis for estimating the proportion of C inputs utilized by the dominant metazoan. The findings suggest that invasive catfish utilize 15 % of total OM inputs and up to 40 % of allochthonous inputs to the James.


Sign in / Sign up

Export Citation Format

Share Document