scholarly journals A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy

2021 ◽  
Author(s):  
Josephine R Paris ◽  
James R Whiting ◽  
Mitchel J Daniel ◽  
Joan Ferrer Obiol ◽  
Paul J Parsons ◽  
...  

Colour polymorphism provides a tractable trait that can be harnessed to explore the evolution of sexual selection and sexual conflict. Male colour patterns of the Trinidadian guppy (Poecilia reticulata) are governed by both natural and sexual selection, and are typified by extreme pattern colour variation as a result of negative frequency dependent selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been historically presumed that colour genes are physically linked to sex determining loci as a supergene on the sex chromosome. Yet the actual identity and genomic location of the colour pattern genes has remained elusive. We phenotyped and genotyped four guppy Iso-Y lines, where colour was inherited along the patriline, but backcrossed into the stock population every 2 to 3 generations for 40 generations, thereby homogenising the genome at regions unrelated to colour. Using an unbiased phenotyping method to proportion colour pattern differences between and among the Iso-Y lines, we confirmed that the breeding design was successful in producing four distinct colour patterns. Our analysis of genome resequencing data of the four Iso-Y lines uncovered a surprising genetic architecture for colour pattern polymorphism. Genetic differentiation among Iso-Y lines was repeatedly associated with a large and diverse haplotype (~5Mb) on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype showed elevated linkage disequilibrium and exhibited evidence of sex-specific diversity when we examined whole-genome sequencing data of the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis, and conclude that predictions of sexual conflict should focus on incorporating the effects of epistasis in understanding complex adaptive architectures.

2018 ◽  
Vol 9 (1) ◽  
pp. 20180047 ◽  
Author(s):  
Melanie N. Brien ◽  
Juan Enciso-Romero ◽  
Andrew J. Parnell ◽  
Patricio A. Salazar ◽  
Carlos Morochz ◽  
...  

Bright, highly reflective iridescent colours can be seen across nature and are produced by the scattering of light from nanostructures. Heliconius butterflies have been widely studied for their diversity and mimicry of wing colour patterns. Despite iridescence evolving multiple times in this genus, little is known about the genetic basis of the colour and the development of the structures which produce it. Heliconius erato can be found across Central and South America, but only races found in western Ecuador and Colombia have developed blue iridescent colour. Here, we use crosses between iridescent and non-iridescent races of H. erato to study phenotypic variation in the resulting F 2 generation. Using measurements of blue colour from photographs, we find that iridescent structural colour is a quantitative trait controlled by multiple genes, with strong evidence for loci on the Z sex chromosome. Iridescence is not linked to the Mendelian colour pattern locus that also segregates in these crosses (controlled by the gene cortex ). Small-angle X-ray scattering data show that spacing between longitudinal ridges on the scales, which affects the intensity of the blue reflectance, also varies quantitatively in F 2 crosses.


2001 ◽  
Vol 79 (10) ◽  
pp. 1891-1896 ◽  
Author(s):  
Trevor E Pitcher ◽  
Jonathan P Evans

The idea that female mate choice might be adaptive is relatively easy to understand in species with resource-based mating systems in which females gain access to a territory, food, or other forms of parental care from the males with whom they mate. In contrast, the evolution of female mate choice in species exhibiting resource-free mating systems remains controversial. One such species in which males contribute nothing but sperm during mating is the guppy (Poecilia reticulata). Here, we examined whether female guppies can obtain information on male fertility (i.e., direct fertility benefits) via cues used during mate choice. Specifically, we examined whether male guppy colour patterns, body size, and mating behaviour signal their functional fertility, that is, their ability to supply a large number of sperm at copulation. We found significant correlations between male phenotype parameters and the number of sperm in male guppies originating from two wild Trinidadian populations. There were, however, significant interpopulation differences with respect to which traits were good predictors of sperm load. In the low-predation Paria River population, larger males and males with relatively more carotenoid colouration had significantly larger sperm loads, but mating behaviour (i.e., sigmoids) and melanin colouration were not good predictors of sperm load. In the high-predation Tacarigua River population, larger males, males that displayed more, and males with less yellow colouration had significantly more sperm, but other colour pattern components (area of orange and black colouration) were not good predictors of sperm load. Overall, our results suggest that there is the potential for direct fertility benefits through mate choice in the promiscuous, non-resource-based mating system of the guppy.


2018 ◽  
Author(s):  
John A. Endler ◽  
Gemma L. Cole ◽  
Alexandrea Kranz

AbstractColour patterns are used by many species to make decisions that ultimately affect their Darwinian fitness. Colour patterns consist of a mosaic of patches that differ in geometry and visual properties. Although traditionally pattern geometry and colour patch visual properties are analysed separately, these components are likely to work together as a functional unit. Despite this, the combined effect of patch visual properties, patch geometry, and the effects of the patch boundaries on animal visual systems, behaviour and fitness are relatively unexplored. Here we describe Boundary Strength Analysis (BSA), a novel way to combine the geometry of the edges (boundaries among the patch classes) with the receptor noise estimate (ΔS) of the intensity of the edges. The method is based upon known properties of vertebrate and invertebrate retinas. The mean and SD of ΔS (mΔS, sΔS) of a colour pattern can be obtained by weighting each edge class ΔS by its length, separately for chromatic and achromatic ΔS. This assumes those colour patterns, or parts of the patterns used in signalling, with larger mΔS and sΔS are more stimulating and hence more salient to the viewers. BSA can be used to examine both colour patterns and visual backgrounds. BSA was successful in assessing the estimated conspicuousness of colour pattern variants in two species, guppies (Poecilia reticulata) and Gouldian finches (Erythrura gouldiae), both polymorphic for patch colour, luminance and geometry. The pattern difference between chromatic and achromatic edges in both species reveals the possibility that chromatic and achromatic edges could function differently. BSA can be applied to any colour pattern used in intraspecific and interspecific behaviour. Seven predictions and four questions about colour patterns are presented.


2018 ◽  
Author(s):  
Mathieu Gautier ◽  
Junichi Yamaguchi ◽  
Julien Foucaud ◽  
Anne Loiseau ◽  
Aurélien Ausset ◽  
...  

Many animal species are comprised of discrete phenotypic forms. Understanding the genetic mechanisms generating and maintaining such phenotypic variation within species is essential to comprehending morphological diversity. A common and conspicuous example of discrete phenotypic variation in natural populations of insects is the occurrence of different colour patterns, which has motivated a rich body of ecological and genetic research1–6. The occurrence of dark, i.e. melanic, forms, displaying discrete colour patterns, is found across multiple taxa, but the underlying genomic basis remains poorly characterized. In numerous ladybird species (Coccinellidae), the spatial arrangement of black and orange patches on adult elytra varies wildly within species, forming strikingly different complex colour patterns7,8. In the harlequin ladybird Harmonia axyridis, more than 200 distinct colour forms have been described, which classic genetic studies suggest result from allelic variation at a single, unknown, locus9,10. Here, we combined whole-genome sequencing, population genomics, gene expression and functional analyses, to establish that the gene pannier controls melanic pattern polymorphism in H. axyridis. We show that pannier, which encodes an evolutionary conserved transcription factor, is necessary for the formation of melanic elements on the elytra. Allelic variation in pannier leads to protein expression in distinct domains on the elytra, and thus determines the distinct colour patterns in H. axyridis. Recombination between pannier alleles may be reduced by a highly divergent sequence of ca. 170 kb in the cis-regulatory regions of pannier with a 50 kb inversion between colour forms. This likely helps maintaining the distinct alleles found in natural populations. Thus we propose that highly variable discrete colour forms can arise in natural populations through cis-regulatory allelic variation of a single gene.


2019 ◽  
Vol 286 (1902) ◽  
pp. 20190435 ◽  
Author(s):  
M. J. Daniel ◽  
L. Koffinas ◽  
K. A. Hughes

Populations harbour enormous genetic diversity in ecologically important traits. Understanding the processes that maintain this variation is a long-standing challenge in evolutionary biology. Recent evidence indicates that a mating preference for novel sexual signals can be a powerful force maintaining genetic diversity. However, the proximate underpinnings of this preference, and its generality, remain unclear. Here, we test the hypothesis that preference for novel sexual signals is underpinned by habituation, a nearly ubiquitous form of learning whereby individuals become less responsive to repetitive stimuli. We use the Trinidadian guppy ( Poecilia reticulata ), in which male colour patterns are diverse yet heritable. We show that repeated exposure to males with a given colour pattern reduces female interest in males with that pattern, and that interest recovers following brief isolation. These results fulfil two core criteria of habituation: responsiveness decline and spontaneous recovery. To distinguish habituation from sensory adaptation and fatigue, we also demonstrate stimulus specificity and dishabituation. These results provide the first evidence that habituation causes a preference for novel sexual signals, addressing the mechanistic underpinnings of this mating preference. Given the pervasiveness of habituation among taxa and sensory contexts, our findings suggest that preference for novelty may play an underappreciated role in mate choice and the maintenance of genetic variation.


Author(s):  
Rachel Olzer ◽  
Rebecca L. Ehrlich ◽  
Justa L. Heinen-Kay ◽  
Jessie Tanner ◽  
Marlene Zuk

Sex and reproduction lie at the heart of studies of insect behavior. We begin by providing a brief overview of insect anatomy and physiology, followed by an introduction to the overarching themes of parental investment, sexual selection, and mating systems. We then take a sequential approach to illustrate the diversity of phenomena and concepts behind insect reproductive behavior from pre-copulatory mate signalling through copulatory sperm transfer, mating positions, and sexual conflict, to post-copulatory sperm competition, and cryptic female choice. We provide an overview of the evolutionary mechanisms driving reproductive behavior. These events are linked by the economic defendability of mates or resources, and how these are allocated in each sex. Under the framework of economic defendability, the reader can better understand how sexual antagonistic behaviors arise as the result of competing optimal fitness strategies between males and females.


Author(s):  
Danika L. Bannasch ◽  
Christopher B. Kaelin ◽  
Anna Letko ◽  
Robert Loechel ◽  
Petra Hug ◽  
...  

AbstractDistinctive colour patterns in dogs are an integral component of canine diversity. Colour pattern differences are thought to have arisen from mutation and artificial selection during and after domestication from wolves but important gaps remain in understanding how these patterns evolved and are genetically controlled. In other mammals, variation at the ASIP gene controls both the temporal and spatial distribution of yellow and black pigments. Here, we identify independent regulatory modules for ventral and hair cycle ASIP expression, and we characterize their action and evolutionary origin. Structural variants define multiple alleles for each regulatory module and are combined in different ways to explain five distinctive dog colour patterns. Phylogenetic analysis reveals that the haplotype combination for one of these patterns is shared with Arctic white wolves and that its hair cycle-specific module probably originated from an extinct canid that diverged from grey wolves more than 2 million years ago. Natural selection for a lighter coat during the Pleistocene provided the genetic framework for widespread colour variation in dogs and wolves.


Crustaceana ◽  
2019 ◽  
Vol 92 (7) ◽  
pp. 799-839 ◽  
Author(s):  
Akihiro Yoshikawa ◽  
Kazuho Ikeo ◽  
Junichi Imoto ◽  
Wachirah Jaingam ◽  
Lily Surayya Eka Putri ◽  
...  

Abstract Species of hermit crabs in the genus Clibanarius Dana, 1852 have adapted to various environments in the intertidal areas, including hard substrates and soft sediments. These species often bear a close morphological resemblance to each other, therefore, the colouration on the pereopods can be one of the reliable characteristics to distinguish the species. However, the evolutionary relationships among species with different colour patterns and relationships between colour patterns and habitat adaptation have not previously been investigated. Therefore, we reconstructed the phylogenetic relationships among 19 species of Clibanarius based on mitochondrial [12S rRNA, 16S rRNA and cytochrome oxidase I] and nuclear [histone H3] DNA markers. The results suggest that the striped and solid colour elements have evolved multiple times independently, with the ancestral colour pattern potentially being scattered, bright colour spots with a bright colour band. Our findings also suggest that evolutionary adaptation from hard substrates to mudflats and soft sediments may have occurred at least twice.


2021 ◽  
Vol 8 (6) ◽  
pp. 210308
Author(s):  
Collette Cook ◽  
Erin C. Powell ◽  
Kevin J. McGraw ◽  
Lisa A. Taylor

To avoid predation, many animals mimic behaviours and/or coloration of dangerous prey. Here we examine potential sex-specific mimicry in the jumping spider Habronattus pyrrithrix . Previous work proposed that males' conspicuous dorsal coloration paired with characteristic leg-waving (i.e. false antennation) imperfectly mimics hymenopteran insects (e.g. wasps and bees), affording protection to males during mate-searching and courtship. By contrast, less active females are cryptic and display less leg-waving. Here we test the hypothesis that sexually dimorphic dorsal colour patterns in H. pyrrithrix are most effective when paired with sex-specific behaviours. We manipulated spider dorsal coloration with makeup to model the opposite sex and exposed them to a larger salticid predator ( Phidippus californicus ). We predicted that males painted like females should suffer higher predation rates than sham-control males. Likewise, females painted like males should suffer higher predation rates than sham-control females. Contrary to expectations, spiders with male-like coloration were attacked more than those with female-like coloration, regardless of their actual sex. Moreover, males were more likely to be captured, and were captured sooner, than females (regardless of colour pattern). With these unexpected negative results, we discuss alternative functional hypotheses for H. pyrrithrix colours, as well as the evolution of defensive coloration generally.


Sign in / Sign up

Export Citation Format

Share Document