scholarly journals Probing Affinity, Avidity, Anti-Cooperativity, and Competition in Antibody and Receptor Binding to the SARS-CoV-2 Spike by Single Particle Mass Analyses

2021 ◽  
Author(s):  
Victor C Yin ◽  
Szu-Hsueh Lai ◽  
Tom G Caniels ◽  
Philip J.M. Brouwer ◽  
Mitch Brinkkemper ◽  
...  

Determining how antibodies interact with the spike (S) protein of the SARS-CoV-2 virus is critical for combating COVID-19. Structural studies typically employ simplified, truncated constructs that may not fully recapitulate the behaviour of the original complexes. Here, we combine two single particle mass analysis techniques (mass photometry and charge-detection mass spectrometry) to enable measurement of full IgG binding to the trimeric SARS-CoV-2 S ectodomain. Our experiments reveal that antibodies targeting the S-trimer typically prefer stoichiometries lower than the symmetry-predicted 3:1 binding. We determine that this behaviour arises from the interplay of steric clashes and avidity effects that are not reflected in common antibody constructs (i.e. Fabs). Surprisingly, these sub-stoichiometric complexes are fully effective at blocking ACE2 binding despite containing free receptor binding sites. Our results highlight the importance of studying antibody/antigen interactions using complete, multimeric constructs and showcase the utility of single particle mass analyses in unraveling these complex interactions.

Author(s):  
Victor Yin ◽  
Szu-Hsueh Lai ◽  
Tom G. Caniels ◽  
Philip J. M. Brouwer ◽  
Mitch Brinkkemper ◽  
...  

2019 ◽  
Author(s):  
Tobias P. Wörner ◽  
Joost Snijder ◽  
Antonette Bennett ◽  
Mavis Agbandje-McKenna ◽  
Alexander A. Makarov ◽  
...  

AbstractHere we show that single particle charge-detection mass spectrometry (CD-MS) can be performed on a ubiquitous Orbitrap mass analyser and applied to the analysis of high-mass (megadalton) heterogeneous biomolecular assemblies. We demonstrate that single particle high-mass ions can survive in the Orbitrap for seconds, whereby their measured signal amplitudes scale linearly with charge state over the entire m/z range. Orbitrap based single particle CD-MS can be used to resolve mixed ion populations, accurately predict charge states, and consequently also the mass of the ions. We successfully applied CD-MS to challenging natural and biotherapeutic protein assemblies, such as IgM oligomers, designed protein nano-cages, ribosome particles and intact, empty- and genome-loaded Adeno-associated virus particles. Single particle CD-MS combined with native MS on existing Orbitrap platforms will greatly expand its application, especially in the mass analysis of megadalton heterogeneous biomolecular assemblies.


2020 ◽  
Vol 17 (4) ◽  
pp. 395-398 ◽  
Author(s):  
Tobias P. Wörner ◽  
Joost Snijder ◽  
Antonette Bennett ◽  
Mavis Agbandje-McKenna ◽  
Alexander A. Makarov ◽  
...  

1994 ◽  
Vol 269 (44) ◽  
pp. 27186-27192
Author(s):  
P A Staubs ◽  
D R Reichart ◽  
A R Saltiel ◽  
K L Milarski ◽  
H Maegawa ◽  
...  

2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


Sign in / Sign up

Export Citation Format

Share Document