scholarly journals Phosphatidylglycerol synthesis facilitates plastid gene expression and light induction of nuclear photosynthetic genes

2021 ◽  
Author(s):  
Sho Fujii ◽  
Koichi Kobayashi ◽  
Ying-Chen Lin ◽  
Yu-chi Liu ◽  
Yuki Nakamura ◽  
...  

AbstractPhosphatidylglycerol (PG) is the only major phospholipid in the thylakoid membrane of chloroplasts. PG is essential for photosynthesis and loss of PG in Arabidopsis thaliana results in severe defects of growth and chloroplast development with decreased chlorophyll accumulation, impaired thylakoid formation, and downregulation of photosynthesis-associated genes encoded in nuclear and plastid genomes. However, how the absence of PG affects the gene expression and plant growth remains unclear. To elucidate this mechanism, we investigated the growth and transcriptional profiles of a PG-deficient Arabidopsis mutant pgp1-2 under various light conditions. Microarray analysis demonstrated that reactive oxygen species-responsive genes were upregulated in pgp1-2. Decreased growth light did not alleviated the impaired leaf development and the downregulation of photosynthesis-associated genes in pgp1-2, indicating limited impacts of photooxidative stress on the defects of pgp1-2. Illumination to dark-adapted pgp1-2 triggered downregulation of photosynthesis-associated nuclear-encoded genes (PhANGs), while plastid-encoded genes were constantly suppressed. Overexpression of GOLDEN2-LIKE1 (GLK1), a transcription factor regulating chloroplast development, in pgp1-2 upregulated PhANGs but not plastid-encoded genes along with chlorophyll accumulation. Our data suggest a broad impact of PG biosynthesis on nuclear-encoded genes partially via GLK1 and a specific involvement of this lipid in the plastid gene expression and plant development.

2020 ◽  
Author(s):  
Kamran Alamdari ◽  
Karen E. Fisher ◽  
Andrew B. Sinson ◽  
Joanne Chory ◽  
Jesse D. Woodson

SummaryChloroplasts constantly experience photo-oxidative stress while performing photosynthesis. This is particularly true under abiotic stresses that lead to the accumulation of reactive oxygen species (ROS). While ROS leads to the oxidation of DNA, proteins, and lipids, it can also act as a signal to induce acclimation through chloroplast degradation, cell death, and nuclear gene expression. Although the mechanisms behind ROS signaling from chloroplasts remain mostly unknown, several genetic systems have been devised in the model plant Arabidopsis to understand their signaling properties. One system uses the plastid ferrochelatase two (fc2) mutant that conditionally accumulates the ROS singlet oxygen (1O2) leading to chloroplast degradation and eventually cell death. Here we have mapped three mutations that suppress chloroplast degradation in the fc2 mutant and demonstrate that they affect two independent loci (PPR30 and mTERF9) encoding chloroplast proteins predicted to be involved in post-transcriptional gene expression. Mutations in either gene were shown to lead to broadly reduced chloroplast gene expression, impaired chloroplast development, and reduced chloroplast stress signaling. In these mutants, however, 1O2 levels were uncoupled to chloroplast degradation suggesting that PPR30 and mTERF9 are involved in ROS signaling pathways. In the wild type background, ppr30 and mTERF9 mutants were also observed to be less susceptible to cell death induced by excess light stress. Together these results suggest that plastid gene expression (or the expression of specific plastid genes) is a necessary prerequisite for chloroplasts to activate 1O2 signaling pathways to induce chloroplast degradation and/or cell death.Significance summaryReactive oxygen species accumulate in the chloroplast (photosynthetic plastids) and signal for stress acclimation by inducing chloroplast degradation, cell death, and changes in nuclear gene expression. We have identified two chloroplast-localized proteins involved in gene regulation that are required to transmit these signals, suggesting that proper plastid gene expression and chloroplast development is necessary to activate chloroplast controlled cellular degradation and nuclear gene expression pathways.


Sign in / Sign up

Export Citation Format

Share Document