scholarly journals Improving reproducibility of proton MRST by optimally averaging temperatures measured from multiple references: theoretical and empirical approaches

Author(s):  
Zhengchao Dong ◽  
Joshua T Kantrowitz ◽  
John J Mann

Abstract Purpose: In 1H MRS-based thermometry of brain, averaging temperatures measured from more than one reference peak offers several advantages including improving the reproducibility, i.e. precision, of the measurement. This paper proposes theoretically and empirically optimal weighting factors to improve the weighted average of temperatures measured from three references. Methods: We first proposed concepts of equivalent noise and equivalent signal-to-noise ratio in terms of frequency measurement and a concept of relative frequency that allows the combination of different peaks in a spectrum for improving the accuracy of frequency measurement. Based on these, we then developed a theoretically optimal weighting factor and suggested an empirical weighting factor for weighted average of temperatures measured from three references in 1H MRS-based thermometry. We assessed the two new weighting factors, together with other two previously proposed weighting factors, by comparing the errors of temperatures measured from individual references and the errors of averaged temperatures using these differing weighting factors. These errors were defined as the standard deviations in repeated measurements and in Monte Carlo studies. We also performed computer simulations to aid error analyses in temperature averaging. Results: Both the proposed theoretical and empirical weighting factors outperformed the other two previously proposed weighting factors as well as the three individual references in all phantom and in vivo experiments. In phantom experiments with 4 Hz or 10 Hz line broadening, the theoretical weighting outperformed the empirical one, but the latter was superior in all other repeated and Monte Carlo tests performed on phantom and in vivo data. Computer simulations offered explanations for the performances of the two new proposed weightings. Conclusion: The proposed two new weighting factors are superior to the two previously proposed weighting factors and can improve the measurement of temperature using 1H MRS-based thermometry.

1983 ◽  
Vol 27 (2) ◽  
pp. 606-627 ◽  
Author(s):  
Hafez M. A. Radi ◽  
John O. Rasmussen ◽  
Kenneth A. Frankel ◽  
John P. Sullivan ◽  
H. C. Song

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i17-i17
Author(s):  
Puneet Bagga ◽  
Laurie Rich ◽  
Mohammad Haris ◽  
Neil Wilson ◽  
Mitch Schnall ◽  
...  

Abstract Most cancers, including glioblastomas (GBMs), rely extensively on glycolysis to support growth, proliferation, and survival. A hallmark of this elevated glycolysis is overexpression of Lactate dehydrogenase-A (LDHA) protein leading to increased uptake of glucose and overproduction of lactate. Various clinical trials using LDHA as a target for diagnosis and treatment have yielded encouraging results. However, in vivo monitoring of LDHA expression has been challenging due to either requirement of administration of radioactive substrates or specialized hardware. In this presentation, we will demonstrate a new method-quantitative exchanged-label turnover MRS (QELT, or simply qMRS)-that increases the sensitivity of magnetic resonance-based metabolic mapping without the requirement for specialized hardware. qMRS relies on the administration of deuterated (2H-labeled) substrates to track the production of downstream metabolites. Since 2H is invisible on 1H MRS, replacement of 1H with 2H due to metabolic turnover leads to an overall reduction in 1H MRS signal for the corresponding metabolites. We applied our qMRS technique to monitor the rate of lactate production in a preclinical GBM model. Infusion of [6,6’-2H2]glucose led to downstream deuterium labeling of lactate, thereby resulting in a reduction in the 1.33 ppm lactate-CH3 peak on 1H MRS over time. The subtraction of post-administration 1H MR spectra from the pre-infusion spectra aided in the determination of the kinetics of the lactate turnover. We believe that the detection and quantification of lactate production kinetics may provide crucial information regarding tumor LDHA expression non-invasively in GBMs without requiring biopsies. Hence, qMRS is expected to open up new opportunities to probe LDHA expression differences in a variety of gliomas, including GBMs and astrocytomas. This method takes advantage of the universal availability and ease of implementation of 1H MRS on all clinical and preclinical magnetic resonance scanners.


2019 ◽  
Vol 59 ◽  
pp. 30-36 ◽  
Author(s):  
Joel Poder ◽  
Dean Cutajar ◽  
Susanna Guatelli ◽  
Marco Petasecca ◽  
Andrew Howie ◽  
...  

2005 ◽  
Vol 17 (23) ◽  
pp. 3509-3524 ◽  
Author(s):  
Per Zetterström ◽  
Sigita Urbonaite ◽  
Fredrik Lindberg ◽  
Robert G Delaplane ◽  
Jaan Leis ◽  
...  

2010 ◽  
Vol 406 (1) ◽  
pp. 55-67 ◽  
Author(s):  
F. Soisson ◽  
C.S. Becquart ◽  
N. Castin ◽  
C. Domain ◽  
L. Malerba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document