frequency measurement
Recently Published Documents


TOTAL DOCUMENTS

1597
(FIVE YEARS 283)

H-INDEX

53
(FIVE YEARS 7)

2022 ◽  
Author(s):  
John Steinmetz ◽  
Kevin Lyons ◽  
Meiting Song ◽  
Jaime Cardenas ◽  
Andrew Jordan

2022 ◽  
Vol 128 (1) ◽  
Author(s):  
Yuan Zhang ◽  
Chongxin Shan ◽  
Klaus Mølmer

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 81
Author(s):  
Achuan Wang ◽  
Xinnian Yang ◽  
Dabo Xin

The tree sway frequency is an important part of the dynamic properties of trees. In order to obtain trees sway frequency in wind, a method of tracking and measuring the sway frequency of leafless deciduous trees by adaptive tracking window based on MOSSE was proposed. Firstly, an adaptive tracking window is constructed for the observed target. Secondly, the tracking method based on Minimum Output Sum Of Squared Error Filter (MOSSE) is used to track tree sway. Thirdly, Fast Fourier transform was used to analyze the horizontal sway velocity of the target area on the trees, and the sway frequency was determined. Finally, comparing the power spectral densities (PSDs) of the x axis acceleration measured by the accelerometer and PSDs of the x axis velocity measured by the video, the fundamental sway frequency measured by the accelerometer is equal to the fundamental sway frequency measured by video. The results show that the video-based method can be used successfully for measuring the sway frequency of leafless deciduous trees.


2022 ◽  
Vol 962 (1) ◽  
pp. 012028
Author(s):  
A O Orlov ◽  
S V Tsyrenzhapov

Abstract In this work, low-frequency characteristics of wetted nanoporous silicate materials were measured, as well as the specimen’s own low-frequency electric fluctuations at the frequencies of 1…100 Hz. The measurements at low frequencies were conducted at different voltages of the probing signal. A capacity cell was used in making the measurements. In the experiments, at the temperatures below –25…–30 °C, non-linearity of the medium was discovered. The experiments on the study of the specimen’s own electric fluctuations at these temperatures revealed their essential increase. These temperatures are below the point of phase transition of supercooled water to recently discovered ferroelectric ice 0. Based on the measurements made, a conclusion was made regarding formation of this modification of ice in the nanosize pores of the wetted materials under study. Ice 0 is a ferroelectric; therefore, its formation from deeply supercooled water may have a significant impact on the electric parameters of wetted bodies at the temperatures below –23 °C. At the interface of such ice with another dielectric, a thin layer with practically metallic conductivity emerges. Such a layer influences not only the non-linear dependence of dielectric permittivity on the electric field but also increases attenuation of electromagnetic radiation in a medium.


2021 ◽  
Author(s):  
Qingqing Meng ◽  
Zihang Zhu ◽  
Tao Lin ◽  
He Li ◽  
Guodong Wang ◽  
...  

Abstract In this paper, a novel and efficient photonic-assisted remote frequency measurement (RFM) system with a significantly simplified structure and flexible operation range is proposed. By simply changing the dispersion coefficient or length of the dispersion medium in the central station (CS), the microwave frequency measurement range in the remote antenna unit (RAU) can be tuned. In this system, the RAU and the CS is separated to ensure the concealment and safety of the signal processing unit. The measurement range of the RFM system can be tuned easily during the measurement process without system reconstruction, and different RAUs located at different places can be controlled to work at the same measurement range. The simulation results show that a frequency measurement over the high frequency range (>18 GHz) can be achieved with a measurement error better than ±0.2 GHz. Noteworthy, the impact of the non-ideal factors such as bias drift, intensity noise, phase noise, the equivalent deviation of the polarization beam splitter (PBS), and the dispersion value of the single mode fiber (SMF) is also discussed. It has been proved that they have little influence on the system performance over the high frequency range.


2021 ◽  
Author(s):  
Yulin Zhu ◽  
Beilei Wu ◽  
Jing Li ◽  
Muguang Wang ◽  
Shiying Xiao ◽  
...  

Abstract We propose and analyze an instantaneous frequency measurement system using optical power monitoring technique with improved resolution. The primary component employed in the proposal is a DP-QPSK modulator which is used to modulate the microwave signal with a designed time delay and phase shifting. Then the generated optical signal is sent to polarization beam splitter (PBS) via polarization controller (PC). Thanks to the complementary transmission nature of polarization interference introduced by PBS, the frequency information is converted to the optical power and the relationship between the amplitude comparison function (ACF) and microwave frequency to be measured is established. Thus, the frequency of the microwave signal could be easily measured through monitoring the optical powers of the two output ports of the PBS. Furthermore, by adjusting the DC biases of the DP-QPSK modulator instead of changing the electrical delay, the measurement range and resolution can be switched. In this paper, the basic principle of the instantaneous frequency measurement system is derived in detail, and simulation has been performed to investigate the resolution, the measurement range and the impact of imperfection devices. The proposed scheme is wavelength independent and measurement range switchable, which can avoid the laser wavelength drifting problem and greatly increase the system flexibility.


Sign in / Sign up

Export Citation Format

Share Document