scholarly journals Determination of human DNA replication origin position and efficiency reveals principles of initiation zone organisation

2021 ◽  
Author(s):  
Guillaume Guilbaud ◽  
Pierre Murat ◽  
Helen S Wilkes ◽  
Leticia Koch Lerner ◽  
Julian Sale ◽  
...  

Replication of the human genome initiates within broad zones of ~ 150 kb. The extent to which firing of individual DNA replication origins within initiation zones is spatially stochastic or localised at defined sites remains a matter of debate. A thorough characterisation of the dynamic activation of origins within initiation zones is hampered by the lack of a high-resolution map of both their position and efficiency. To address this shortcoming, we describe a modification of initiation site sequencing (ini-seq) based on density substitution. Newly-replicated DNA is rendered heavy-light (HL) by incorporation of BrdUTP, unreplicated DNA remaining light-light (LL). Replicated HL-DNA is separated from unreplicated LL-DNA by equilibrium density gradient centrifugation, then both fractions are subjected to massive parallel sequencing. This allows precise mapping of 23,905 replication origins simultaneously with an assignment of a replication initiation efficiency score to each. We show that origin firing within initiation zones is not randomly distributed. Rather, origins are arranged hierarchically with a set of very highly efficient origins marking zone boundaries. We propose that these origins explain much of the early firing activity arising within initiation zones, helping to unify the concept of replication initiation zones with the identification of discrete replication origin sites.

2006 ◽  
Vol 17 (1) ◽  
pp. 308-316 ◽  
Author(s):  
Prasanta K. Patel ◽  
Benoit Arcangioli ◽  
Stephen P. Baker ◽  
Aaron Bensimon ◽  
Nicholas Rhind

DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across the genome. We have addressed these questions by determining the location of firing origins on individual fission yeast DNA molecules using DNA combing. We show that the firing of replication origins is stochastic, leading to a random distribution of replication initiation. Furthermore, origin firing is independent between cell cycles; there is no epigenetic mechanism causing an origin that fires in one cell cycle to preferentially fire in the next. Thus, the fission yeast strategy for the initiation of replication is different from models of eukaryotic replication that propose coordinated origin firing.


2018 ◽  
Vol 3 ◽  
pp. 23 ◽  
Author(s):  
Ana B.A. Wallis ◽  
Conrad A. Nieduszynski

Background: Understanding DNA replication initiation is essential to understand the mis-regulation of replication seen in cancer and other human disorders. DNA replication initiates from DNA replication origins. In eukaryotes, replication is dependent on cell cycle kinases which function during S phase. Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) act to phosphorylate the DNA helicase (composed of mini chromosome maintenance proteins: Mcm2-7) and firing factors to activate replication origins. It has recently been found that Rif1 can oppose DDK phosphorylation. Rif1 can recruit protein phosphatase 1 (PP1) to dephosphorylate MCM and restricts origin firing. In this study, we investigate a potential role for another phosphatase, protein phosphatase 2A (PP2A), in regulating DNA replication initiation. The PP2A regulatory subunit Rts1 was previously identified in a large-scale genomic screen to have a genetic interaction with ORC2 (a DNA replication licensing factor). Deletion of RTS1 synthetically rescued the temperature-sensitive (ts-) phenotype of ORC2 mutants. Methods: We deleted RTS1 in multiple ts-replication factor Saccharomyces cerevisiae strains, including ORC2.  Dilution series assays were carried out to compare qualitatively the growth of double mutant ∆rts1 ts-replication factor strains relative to the respective single mutant strains.   Results: No synthetic rescue of temperature-sensitivity was observed. Instead we found an additive phenotype, indicating gene products function in separate biological processes. These findings are in agreement with a recent genomic screen which found that RTS1 deletion in several ts-replication factor strains led to increased temperature-sensitivity. Conclusions: We find no evidence that Rts1 is involved in the dephosphorylation of DNA replication initiation factors.


2015 ◽  
Vol 43 (5) ◽  
pp. 2560-2574 ◽  
Author(s):  
Beatrice Rondinelli ◽  
Hélène Schwerer ◽  
Elena Antonini ◽  
Marco Gaviraghi ◽  
Alessio Lupi ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Philippe Coulombe ◽  
Joelle Nassar ◽  
Isabelle Peiffer ◽  
Slavica Stanojcic ◽  
Yvon Sterkers ◽  
...  

2014 ◽  
Vol 10 (10) ◽  
pp. 1193-1202 ◽  
Author(s):  
Rui-Hong Wang ◽  
Tyler J. Lahusen ◽  
Qiang Chen ◽  
Xiaoling Xu ◽  
Lisa M. Miller Jenkins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document