scholarly journals DNA Replication Origins Fire Stochastically in Fission Yeast

2006 ◽  
Vol 17 (1) ◽  
pp. 308-316 ◽  
Author(s):  
Prasanta K. Patel ◽  
Benoit Arcangioli ◽  
Stephen P. Baker ◽  
Aaron Bensimon ◽  
Nicholas Rhind

DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across the genome. We have addressed these questions by determining the location of firing origins on individual fission yeast DNA molecules using DNA combing. We show that the firing of replication origins is stochastic, leading to a random distribution of replication initiation. Furthermore, origin firing is independent between cell cycles; there is no epigenetic mechanism causing an origin that fires in one cell cycle to preferentially fire in the next. Thus, the fission yeast strategy for the initiation of replication is different from models of eukaryotic replication that propose coordinated origin firing.

Author(s):  
Koji Masuda ◽  
Claire Renard-Guillet ◽  
Katsuhiko Shirahige ◽  
Takashi Sutani

2018 ◽  
Vol 3 ◽  
pp. 23 ◽  
Author(s):  
Ana B.A. Wallis ◽  
Conrad A. Nieduszynski

Background: Understanding DNA replication initiation is essential to understand the mis-regulation of replication seen in cancer and other human disorders. DNA replication initiates from DNA replication origins. In eukaryotes, replication is dependent on cell cycle kinases which function during S phase. Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) act to phosphorylate the DNA helicase (composed of mini chromosome maintenance proteins: Mcm2-7) and firing factors to activate replication origins. It has recently been found that Rif1 can oppose DDK phosphorylation. Rif1 can recruit protein phosphatase 1 (PP1) to dephosphorylate MCM and restricts origin firing. In this study, we investigate a potential role for another phosphatase, protein phosphatase 2A (PP2A), in regulating DNA replication initiation. The PP2A regulatory subunit Rts1 was previously identified in a large-scale genomic screen to have a genetic interaction with ORC2 (a DNA replication licensing factor). Deletion of RTS1 synthetically rescued the temperature-sensitive (ts-) phenotype of ORC2 mutants. Methods: We deleted RTS1 in multiple ts-replication factor Saccharomyces cerevisiae strains, including ORC2.  Dilution series assays were carried out to compare qualitatively the growth of double mutant ∆rts1 ts-replication factor strains relative to the respective single mutant strains.   Results: No synthetic rescue of temperature-sensitivity was observed. Instead we found an additive phenotype, indicating gene products function in separate biological processes. These findings are in agreement with a recent genomic screen which found that RTS1 deletion in several ts-replication factor strains led to increased temperature-sensitivity. Conclusions: We find no evidence that Rts1 is involved in the dephosphorylation of DNA replication initiation factors.


2017 ◽  
Author(s):  
Divya Ramalingam Iyer ◽  
Nicholas Rhind

AbstractIn response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions, we have analyzed the checkpoint in the fission yeast Schizosaccharomyces pombe using a single-molecule DNA combing assay, which allows us to unambiguously separate the contribution of origin and fork regulation towards replication slowing, and allows us to investigate the behavior of individual forks. Moreover, we have interrogated the role of forks interacting with individual sites of damage by using three damaging agents—MMS, 4NQO and bleomycin—that cause similar levels of replication slowing with very different frequency of DNA lesions. We find that the checkpoint slows replication by inhibiting origin firing, but not by decreasing fork rates. However, the checkpoint appears to facilitate replication of damaged templates, allowing forks to more quickly pass lesions. Finally, using a novel analytic approach, we rigorously identify fork stalling events in our combing data and show that they play a previously unappreciated role in shaping replication kinetics in response to DNA damage.Author SummaryFaithful duplication of the genome is essential for genetic stability of organisms and species. To ensure faithful duplication, cells must be able to replicate damaged DNA. To do so, they employ checkpoints that regulate replication in response to DNA damage. However, the mechanisms by which checkpoints regulate DNA replication forks, the macromolecular machines that contain the helicases and polymerases required to unwind and copy the parental DNA, is unknown. We have used DNA combing, a single-molecule technique that allows us to monitor the progression of individual replication forks, to characterize the response of fission yeast replication forks to DNA damage that blocks the replicative polymerases. We find that forks pass most lesions with only a brief pause and that this lesion bypass is checkpoint independent. However, at a low frequency, forks stall at lesions, and that the checkpoint is required to prevent these stalls from accumulating single-stranded DNA. Our results suggest that the major role of the checkpoint is not to regulate the interaction of replication forks with DNA damage, per se, but to mitigate the consequences of fork stalling when forks are unable to successfully navigate DNA damage on their own.


2021 ◽  
Author(s):  
Guillaume Guilbaud ◽  
Pierre Murat ◽  
Helen S Wilkes ◽  
Leticia Koch Lerner ◽  
Julian Sale ◽  
...  

Replication of the human genome initiates within broad zones of ~ 150 kb. The extent to which firing of individual DNA replication origins within initiation zones is spatially stochastic or localised at defined sites remains a matter of debate. A thorough characterisation of the dynamic activation of origins within initiation zones is hampered by the lack of a high-resolution map of both their position and efficiency. To address this shortcoming, we describe a modification of initiation site sequencing (ini-seq) based on density substitution. Newly-replicated DNA is rendered heavy-light (HL) by incorporation of BrdUTP, unreplicated DNA remaining light-light (LL). Replicated HL-DNA is separated from unreplicated LL-DNA by equilibrium density gradient centrifugation, then both fractions are subjected to massive parallel sequencing. This allows precise mapping of 23,905 replication origins simultaneously with an assignment of a replication initiation efficiency score to each. We show that origin firing within initiation zones is not randomly distributed. Rather, origins are arranged hierarchically with a set of very highly efficient origins marking zone boundaries. We propose that these origins explain much of the early firing activity arising within initiation zones, helping to unify the concept of replication initiation zones with the identification of discrete replication origin sites.


2018 ◽  
Author(s):  
Yu-Hung Chen ◽  
Sarah Keegan ◽  
Malik Kahli ◽  
Peter Tonzi ◽  
David Fenyö ◽  
...  

ABSTRACTThe locations of active DNA replication origins in the human genome, and the determinants of origin activation, remain controversial. Additionally, neither the predominant sites of replication termination nor the impact of transcription on replication-fork mobility have been defined. We demonstrate that replication initiation occurs preferentially in the immediate vicinity of the transcription start site of genes occupied by high levels of RNA polymerase II, ensuring co-directional replication of the most highly transcribed genes. Further, we demonstrate that dormant replication origin firing represents the global activation of pre-existing origins. We also show that DNA replication naturally terminates at the polyadenylation site of transcribed genes. During replication stress, termination is redistributed to gene bodies, generating a global reorientation of replication relative to transcription. Our analysis provides a unified model for the coupling of transcription with replication initiation and termination in human cells.


Sign in / Sign up

Export Citation Format

Share Document