dna replication initiation
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 40)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Author(s):  
David M Roberts ◽  
Anna Anchimiuk ◽  
Tomas G Kloosterman ◽  
Heath Murray ◽  
Ling Juan Wu ◽  
...  

SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving ATP-dependent dimerization and DNA binding, leading to chromosome segregation and SMC loading. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation, and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. We now show that a major redistribution of SMC complexes drives axial filament formation, in a process regulated by ParA/Soj. Unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyse ATP. These results reveal a new role for ParA/Soj proteins in the regulation of SMC dynamics in bacteria, and yet further complexity in the web of interactions involving chromosome replication, segregation, and organization, controlled by ParAB and SMC.


2021 ◽  
Author(s):  
Jinchun Wu ◽  
Yang Liu ◽  
Zhengrong Zhangding ◽  
Xuhao Liu ◽  
Chen Ai ◽  
...  

Cohesin participates in loop formation by extruding DNA fibers from its ring-shaped structure. Cohesin dysfunction eliminates chromatin loops but only causes modest transcription perturbation, which cannot fully explain the frequently observed mutations of cohesin in various cancers. Here, we found that DNA replication initiates at more than one thousand extra dormant origins after acute depletion of RAD21, a core subunit of cohesin, resulting in earlier replicating timing at approximately 30% of the human genomic regions. In contrast, CTCF is dispensable for suppressing the early firing of dormant origins that are distributed away from the loop boundaries. Furthermore, greatly elevated levels of gross DNA breaks and genome-wide chromosomal translocations arise in RAD21-depleted cells, accompanied by dysregulated replication timing at dozens of hotspot genes. Thus, we conclude that cohesin coordinates DNA replication initiation to ensure proper replication timing and safeguards genome integrity.


Author(s):  
Liu Mei ◽  
Jeanette Gowen Cook

The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.


2021 ◽  
Author(s):  
Karl-Uwe Reusswig ◽  
Julia Bittmann ◽  
Martina Peritore ◽  
Michael Wierer ◽  
Matthias Mann ◽  
...  

DNA replicates once per cell cycle. Interfering with the regulation of DNA replication initiation generates genome instability through over-replication and has been linked to early stages of cancer development. Here, we engineered genetic systems in budding yeast to induce unscheduled replication in the G1-phase of the cell cycle. Unscheduled G1 replication initiated at canonical S-phase origins across the genome. We quantified differences in replisomes in G1- and S-phase and identified firing factors, polymerase α, and histone supply as factors that limit replication outside S-phase. G1 replication per se did not trigger cellular checkpoints. Subsequent replication during S-phase, however, resulted in over-replication and led to chromosome breaks via head-to-tail replication fork collisions that are marked by chromosome-wide, strand-biased occurrence of RPA-bound single-stranded DNA. Low-level, sporadic induction of G1 replication induced an identical response, indicating findings from synthetic systems are applicable to naturally occurring scenarios of unscheduled replication initiation by G1/S deregulation.


2021 ◽  
Vol 22 (16) ◽  
pp. 8796
Author(s):  
Antonio Galarreta ◽  
Pablo Valledor ◽  
Oscar Fernandez-Capetillo ◽  
Emilio Lecona

Post-translational modification of the DNA replication machinery by ubiquitin and SUMO plays key roles in the faithful duplication of the genetic information. Among other functions, ubiquitination and SUMOylation serve as signals for the extraction of factors from chromatin by the AAA ATPase VCP. In addition to the regulation of DNA replication initiation and elongation, we now know that ubiquitination mediates the disassembly of the replisome after DNA replication termination, a process that is essential to preserve genomic stability. Here, we review the recent evidence showing how active DNA replication restricts replisome ubiquitination to prevent the premature disassembly of the DNA replication machinery. Ubiquitination also mediates the removal of the replisome to allow DNA repair. Further, we discuss the interplay between ubiquitin-mediated replisome disassembly and the activation of CDK1 that is required to set up the transition from the S phase to mitosis. We propose the existence of a ubiquitin–CDK1 relay, where the disassembly of terminated replisomes increases CDK1 activity that, in turn, favors the ubiquitination and disassembly of more replisomes. This model has important implications for the mechanism of action of cancer therapies that induce the untimely activation of CDK1, thereby triggering premature replisome disassembly and DNA damage.


2021 ◽  
Author(s):  
Charles Winterhalter ◽  
Daniel Stevens ◽  
Stepan Fenyk ◽  
Simone Pelliciari ◽  
Elie Marchand ◽  
...  

The mechanisms responsible for helicase loading during the initiation of chromosome replication in bacteria are unclear. Here we report both a positive and a negative mechanism for directing helicase recruitment in the model organism Bacillus subtilis. Systematic mutagenesis of the essential replication initiation gene dnaD and characterization of DnaD variants revealed protein interfaces required for interacting with the master initiator DnaA and with a specific single-stranded DNA (ssDNA) sequence located in the chromosome origin (DnaD Recognition Element, DRE). We propose that the location of the DRE within the replication origin orchestrates recruitment of helicase to achieve bidirectional DNA replication. We also report that the developmentally expressed repressor of DNA replication initiation, SirA, acts by blocking the interaction of DnaD with DnaA, thereby inhibiting helicase recruitment to the origin. These findings significantly advance our mechanistic understanding of helicase recruitment and regulation during bacterial DNA replication initiation. Because DnaD is essential for the viability of clinically relevant Gram-positive pathogens, DnaD is an attractive target for drug development.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Katarzyna Wegrzyn ◽  
Igor Konieczny

Abstract Objective The ability to form nucleoprotein complexes is a fundamental activity of DNA replication initiation proteins. They bind within or nearby the region of replication origin what results in melting of a double-stranded DNA (dsDNA) and formation of single-stranded DNA (ssDNA) region where the replication machinery can assemble. For prokaryotic initiators it was shown that they interact with the formed ssDNA and that this interaction is required for the replication activity. The ability to interact with ssDNA was also shown for Saccharomyces cerevisiae replication initiation protein complex ORC. For Archaea, which combine features of both prokaryotic and eukaryotic organisms, there was no evidence whether DNA replication initiators can interact with ssDNA. We address this issue in this study. Results Using purified Orc1 protein from Aeropyrum pernix (ApOrc1) we analyzed its ability to interact with ssDNA containing sequence of an AT-rich region of the A. pernix origin Ori1 as well as with homopolymers of thymidine (polyT) and adenosine (polyA). The Bio-layer interferometry, surface plasmon resonance and microscale thermophoresis showed that the ApOrc1 can interact with ssDNA and it binds preferentially to T-rich ssDNA. The hydrolysis of ATP is not required for this interaction.


2021 ◽  
Author(s):  
Evelyn Lattmann ◽  
Ting Deng ◽  
Michael Walser ◽  
Patrizia Widmer ◽  
Charlotte Rexha-Lambert ◽  
...  

Cell invasion is an initiating event during tumor cell metastasis and an essential process during development. A screen of  C. elegans  orthologs of genes over-expressed in invasive human melanoma cells has identified several components of the conserved DNA pre-replication complex (pre-RC) as positive regulators of anchor cell (AC) invasion. The pre-RC functions cell-autonomously in the G1-arrested AC to promote invasion, independently of its role in licensing DNA replication origins in proliferating cells. While the helicase activity of the pre-RC is necessary for AC invasion, the downstream acting DNA replication initiation factors are not required. The pre-RC promotes the invasive fate by regulating the expression of extracellular matrix genes and components of the PI3K signaling pathway. Increasing PI3K pathway activity partially suppressed the AC invasion defects caused by pre-RC depletion, suggesting that the PI3K pathway is one critical pre-RC target. We propose that the pre-RC acts in the non-proliferating AC as a transcriptional regulator that facilitates the switch to an invasive phenotype.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Liu ◽  
Chen Ai ◽  
Tingting Gan ◽  
Jinchun Wu ◽  
Yongpeng Jiang ◽  
...  

Abstract Background Early DNA replication occurs within actively transcribed chromatin compartments in mammalian cells, raising the immediate question of how early DNA replication coordinates with transcription to avoid collisions and DNA damage. Results We develop a high-throughput nucleoside analog incorporation sequencing assay and identify thousands of early replication initiation zones in both mouse and human cells. The identified early replication initiation zones fall in open chromatin compartments and are mutually exclusive with transcription elongation. Of note, early replication initiation zones are mainly located in non-transcribed regions adjacent to transcribed regions. Mechanistically, we find that RNA polymerase II actively redistributes the chromatin-bound mini-chromosome maintenance complex (MCM), but not the origin recognition complex (ORC), to actively restrict early DNA replication initiation outside of transcribed regions. In support of this finding, we detect apparent MCM accumulation and DNA replication initiation in transcribed regions due to anchoring of nuclease-dead Cas9 at transcribed genes, which stalls RNA polymerase II. Finally, we find that the orchestration of early DNA replication initiation by transcription efficiently prevents gross DNA damage. Conclusion RNA polymerase II redistributes MCM complexes, but not the ORC, to prevent early DNA replication from initiating within transcribed regions. This RNA polymerase II-driven MCM redistribution spatially separates transcription and early DNA replication events and avoids the transcription-replication initiation collision, thereby providing a critical regulatory mechanism to preserve genome stability.


Sign in / Sign up

Export Citation Format

Share Document