scholarly journals TRAP1 and cyclophilin D compete at OSCP subunit to regulate enzymatic activity and permeability transition pore opening by F-ATP synthase

2021 ◽  
Author(s):  
Giuseppe Cannino ◽  
Andrea Urbani ◽  
Marco Gaspari ◽  
Mariaconcetta Varano ◽  
Alessandro Negro ◽  
...  

AbstractBinding of the mitochondrial chaperone TRAP1 to client proteins shapes cell bioenergetic and proteostatic adaptations, but the panel of TRAP1 clients is only partially defined. Here we show that TRAP1 interacts with F-ATP synthase, the protein complex that provides most cellular ATP. TRAP1 competes with the peptidyl-prolyl cis-trans isomerase cyclophilin D (CyPD) for binding to the oligomycin sensitivity-conferring protein (OSCP) subunit of F-ATP synthase, increasing its catalytic activity and counteracting the inhibitory effect of CyPD. Moreover, TRAP1 inhibits opening of the permeability transition pore (PTP) formed by F-ATP synthase and effectively antagonizes the PTP-inducing effect of CyPD, which elicits mitochondrial depolarization and cell death. Consistently, electrophysiological measurements indicate that TRAP1 and CyPD compete in the modulation of channel activity of purified F-ATP synthase, resulting in PTP inhibition and activation, respectively, and outcompeting each other effect on the channel. Moreover, TRAP1 counteracts PTP induction by CyPD, whereas CyPD reverses TRAP1-mediated PTP inhibition. Our data identify TRAP1 as a F-ATP synthase regulator that can influence cell bioenergetics and survival and can be targeted in pathological conditions where these processes are dysregulated, such as cancer.

2013 ◽  
Vol 304 (5) ◽  
pp. H649-H659 ◽  
Author(s):  
Jiang Zhu ◽  
Mario J. Rebecchi ◽  
Qiang Wang ◽  
Peter S. A. Glass ◽  
Peter R. Brink ◽  
...  

Cardioprotective effects of anesthetic preconditioning and cyclosporine A (CsA) are lost with aging. To extend our previous work and address a possible mechanism underlying age-related differences, we investigated the role of oxidative stress in the aging heart by treating senescent animals with the oxygen free radical scavenger Tempol. Old male Fischer 344 rats (22–24 mo) were randomly assigned to control or Tempol treatment groups for 2 or 4 wk (T×2wk and T×4wk, respectively). Rats received isoflurane 30 min before ischemia-reperfusion injury or CsA just before reperfusion. Myocardial infarction sizes were significantly reduced by isoflurane or CsA in the aged rats treated with Tempol (T×4wk) compared with old control rats. In other experiments, young (4–6 mo) and old rats underwent either chronic Tempol or vehicle treatment, and the levels of myocardial protein oxidative damage, antioxidant enzymes, mitochondrial Ca2+ uptake, cyclophilin D protein, and mitochondrial permeability transition pore opening times were measured. T×4wk significantly increased MnSOD enzyme activity, GSH-to-GSSH ratios, MnSOD protein level, mitochondrial Ca2+ uptake capacity, reduced protein nitrotyrosine levels, and normalized cyclophilin D protein expression in the aged rat heart. T×4wk also significantly prolonged mitochondrial permeability transition pore opening times induced by reactive oxygen species in old cardiomyocytes. Our studies demonstrate that 4 wk of Tempol pretreatment restores anesthetic preconditioning and cardioprotection by CsA in the old rat and that this is associated with decreased oxidative stress and improved mitochondrial function. Our results point to a new protective strategy for the ischemic myocardium in the high-risk older population.


2019 ◽  
Vol 294 (28) ◽  
pp. 10807-10818 ◽  
Author(s):  
Stephen Hurst ◽  
Ariele Baggett ◽  
Gyorgy Csordas ◽  
Shey-Shing Sheu

The mitochondrial matrix ATPase associated with diverse cellular activities (m-AAA) protease spastic paraplegia 7 (SPG7) has been recently implicated as either a negative or positive regulatory component of the mitochondrial permeability transition pore (mPTP) by two research groups. To address this controversy, we investigated possible mechanisms that explain the discrepancies between these two studies. We found that loss of the SPG7 gene increased resistance to Ca2+-induced mPTP opening. However, this occurs independently of cyclophilin D (cyclosporine A insensitive) rather it is through decreased mitochondrial Ca2+ concentrations and subsequent adaptations mediated by impaired formation of functional mitochondrial Ca2+ uniporter complexes. We found that SPG7 directs the m-AAA complex to favor association with the mitochondrial Ca2+ uniporter (MCU) and MCU processing regulates higher order MCU-complex formation. The results suggest that SPG7 does not constitute a core component of the mPTP but can modulate mPTP through regulation of the basal mitochondrial Ca2+ concentration.


2018 ◽  
Vol 50 (1) ◽  
pp. 288-303 ◽  
Author(s):  
Rebecca M. Parodi-Rullán ◽  
Jadira Soto-Prado ◽  
Jesús Vega-Lugo ◽  
Xavier Chapa-Dubocq ◽  
Sara I. Díaz-Cordero ◽  
...  

Background/Aims: The mitochondrial permeability transition pore opening plays a critical role in the pathogenesis of myocardial infarction. Inhibition of cyclophilin-D (CyP-D), a key regulator of the mitochondrial permeability transition pore, has been shown to exert cardioprotective effects against ischemia-reperfusion injury on various animal models, mostly in males. However, failure of recent clinical trials requires a detailed elucidation of the cardioprotective efficacy of CyP-D inhibition. The aim of this study was to examine whether cardioprotective effects of sanglifehrin A, a potent inhibitor of CyP-D, on post-infarcted hearts depends on reperfusion. Methods: Acute or chronic myocardial infarction was induced by coronary artery ligation with/without subsequent reperfusion for 2 and 28 days in female Sprague-Dawley rats. Cardiac function was estimated by echocardiography. Oxygen consumption rates, ROS production, permeability transition pore opening, protein carbonylation and respiratory supercomplexes were analyzed in isolated cardiac mitochondria. Results: Sanglifehrin A significantly improved cardiac function of reperfused hearts at 2 days but failed to protect after 28 days. No protection was observed in non-reperfused post-infarcted hearts. The respiratory control index of mitochondria was significantly reduced in reperfused infarcted hearts at 2-days with no effect at 28-days post-infarction on reperfused and non-reperfused hearts. Likewise, only a minor increase in reactive oxygen species production was observed at 2-days in non-reperfused post-infarcted hearts. Conclusion: This study demonstrates that CyP-D inhibition exerts cardioprotective effects in reperfused but not in non-reperfused infarcted hearts of female rats, and the effects are observed only during acute post-infarction injury.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1052 ◽  
Author(s):  
Jyotsna Mishra ◽  
Ariea J. Davani ◽  
Gayathri K. Natarajan ◽  
Wai-Meng Kwok ◽  
David F. Stowe ◽  
...  

Regulation of mitochondrial free Ca2+ is critically important for cellular homeostasis. An increase in mitochondrial matrix free Ca2+ concentration ([Ca2+]m) predisposes mitochondria to opening of the permeability transition pore (mPTP). Opening of the pore can be delayed by cyclosporin A (CsA), possibly by inhibiting cyclophilin D (Cyp D), a key regulator of mPTP. Here, we report on a novel mechanism by which CsA delays mPTP opening by enhanced sequestration of matrix free Ca2+. Cardiac-isolated mitochondria were challenged with repetitive CaCl2 boluses under Na+-free buffer conditions with and without CsA. CsA significantly delayed mPTP opening primarily by promoting matrix Ca2+ sequestration, leading to sustained basal [Ca2+]m levels for an extended period. The preservation of basal [Ca2+]m during the CaCl2 pulse challenge was associated with normalized NADH, matrix pH (pHm), and mitochondrial membrane potential (ΔΨm). Notably, we found that in PO43− (Pi)-free buffer condition, the CsA-mediated buffering of [Ca2+]m was abrogated, and mitochondrial bioenergetics variables were concurrently compromised. In the presence of CsA, addition of Pi just before pore opening in the Pi-depleted condition reinstated the Ca2+ buffering system and rescued mitochondria from mPTP opening. This study shows that CsA promotes Pi-dependent mitochondrial Ca2+ sequestration to delay mPTP opening and, concomitantly, maintains mitochondrial function.


2019 ◽  
Vol 116 (26) ◽  
pp. 12816-12821 ◽  
Author(s):  
Joe Carroll ◽  
Jiuya He ◽  
Shujing Ding ◽  
Ian M. Fearnley ◽  
John E. Walker

The opening of the permeability transition pore, a nonspecific channel in inner mitochondrial membranes, is triggered by an elevated total concentration of calcium ions in the mitochondrial matrix, leading to disruption of the inner membrane and necrotic cell death. Cyclosporin A inhibits pore opening by binding to cyclophilin D, which interacts with the pore. It has been proposed that the pore is associated with the ATP synthase complex. Previously, we confirmed an earlier observation that the pore survives in cells lacking membrane subunits ATP6 and ATP8 of ATP synthase, and in other cells lacking the enzyme’s c8rotor ring or, separately, its peripheral stalk subunits b and oligomycin sensitive conferral protein. Here, we investigated whether the pore is associated with the remaining membrane subunits of the enzyme. Individual deletion of subunits e, f, g, and 6.8-kDa proteolipid disrupts dimerization of the complex, and deletion of DAPIT (diabetes-associated protein in insulin sensitive tissue) possibly influences oligomerization of dimers, but removal of each subunit had no effect on the pore. Also, we removed together the enzyme’s membrane bound c8ring and the δ-subunit from the catalytic domain. The resulting cells assemble only a subcomplex derived from the peripheral stalk and membrane-associated proteins. Despite diminished levels of respiratory complexes, these cells generate a membrane potential to support uptake of calcium into the mitochondria, leading to pore opening, and retention of its characteristic properties. It is most unlikely that the ATP synthase, dimer or monomer, or any component, provides the permeability transition pore.


Sign in / Sign up

Export Citation Format

Share Document