scholarly journals HDfleX: Software for flexible high structural resolution of hydrogen/deuterium-exchange mass spectrometry data

2021 ◽  
Author(s):  
Neeleema Seetaloo ◽  
Monika Kish ◽  
Jonathan James Phillips

Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) experiments on protein structures can be performed at three levels: (1) by enzymatically digesting labelled proteins and analyzing the peptides (bottom-up), (2) by further fragmenting peptides following digestion (middle-down), and (3) by fragmenting the intact labelled protein (top-down), using soft gas-phase fragmentation methods, such as electron transfer dissociation (ETD). However, to the best of our knowledge, the software packages currently available for the analysis of HDX-MS data do not enable the peptide- and ETD-levels to be combined - they can only be analyzed separately. Thus, we developed HDfleX - a standalone application for the analysis of flexible high structural resolution of HDX-MS data, which allows data at any level of structural resolution (intact protein, peptide, fragment) to be merged. HDfleX features rapid experimental data fitting, robust statistical significance analyses and optional methods for theoretical intrinsic calculations and a novel empirical correction for comparison between solution conditions.

Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 286
Author(s):  
Oliver Ozohanics ◽  
Attila Ambrus

Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) is a rapidly evolving technique for analyzing structural features and dynamic properties of proteins. It may stand alone or serve as a complementary method to cryo-electron-microscopy (EM) or other structural biology approaches. HDX-MS is capable of providing information on individual proteins as well as large protein complexes. Owing to recent methodological advancements and improving availability of instrumentation, HDX-MS is becoming a routine technique for some applications. When dealing with samples of low to medium complexity and sizes of less than 150 kDa, conformation and ligand interaction analyses by HDX-MS are already almost routine applications. This is also well supported by the rapid evolution of the computational (software) background that facilitates the analysis of the obtained experimental data. HDX-MS can cope at times with analytes that are difficult to tackle by any other approach. Large complexes like viral capsids as well as disordered proteins can also be analyzed by this method. HDX-MS has recently become an established tool in the drug discovery process and biopharmaceutical development, as it is now also capable of dissecting post-translational modifications and membrane proteins. This mini review provides the reader with an introduction to the technique and a brief overview of the most common applications. Furthermore, the most challenging likely applications, the analyses of glycosylated and membrane proteins, are also highlighted.


Author(s):  
Jeffrey W. Hudgens

This tutorial provides mechanical drawings, electrical schematics, parts lists, stereolithography (STL) files for producing three-dimensional (3D)-printed parts, initial graphics exchange specification (IGS) files for automated machining, and instructions necessary for construction of a dual protease column, subzero, liquid chromatography system for hydrogen-deuterium exchange mass spectrometry (HDX-MS). Electro-mechanical schematics for construction of two multi-zone temperature controllers that regulate to ±0.05 oC are also included in this tutorial.


2017 ◽  
Vol 474 (11) ◽  
pp. 1867-1877 ◽  
Author(s):  
Glenn R. Masson ◽  
Sarah L. Maslen ◽  
Roger L. Williams

Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics.


Sign in / Sign up

Export Citation Format

Share Document