phosphoinositide 3 kinase
Recently Published Documents


TOTAL DOCUMENTS

3255
(FIVE YEARS 470)

H-INDEX

152
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Jei Hyoung Park ◽  
Kyoung Jin Nho ◽  
Ji Young Lee ◽  
Yung Joon Yoo ◽  
Woo Jin Park ◽  
...  

Abstract Oxidative stress, caused by the accumulation of reactive oxygen species (ROS) during acute myocardial infarction (AMI), is one of the main factors leading to myocardial cell damage and programmed cell death. Phosphatidylinositol-3-kinase -AKT (PI3K-AKT) signaling is essential for regulating cell proliferation, differentiation, and apoptosis. Phosphoinositide-3-kinase (PI3K)-interacting protein 1 (PIK3IP1) is an intrinsic inhibitor of PI3K in various tissues, but its functional role during AMI remains unknown. In this study, the anti-ischemic role of PIK3IP1 in an in vitro AMI setting was evaluated using H9c2 cells. The MTT assay demonstrated that cell viability decreased significantly with treatment of H2O2 (200 -500 µM). The TUNEL assay results revealed substantial cellular apoptosis following treatment with 200 µM H2O2. Under the same conditions, the expression levels of hypoxia-inducible factor (HIF-1α), endothelin-1 (ET-1), bcl-2-like protein 4 (BAX), and cleaved caspase–3, were elevated, whereas those of PIK3IP1 and Bcl-2 decreased significantly. PIK3IP1 overexpression inhibited H2O2-induced, and PI3K-mediated, apoptosis; however, PIK3IP1 knockdown reversed this effect, suggesting that PIK3IP1 functions as an anti-apoptotic molecule. To identify both the upstream and downstream molecules associated with PIK3IP1, ET-1 receptor type-specific antagonists (BQ-123 and BQ-788) and PI3K subtype-specific antagonists (LY294002 and IPI-549) were used to determine the participating isoforms. Co-immunoprecipitation was performed to identify the binding partners of PIK3IP1. Our results demonstrated that ROS-induced cardiac cell death may occur through the ETA-PI3Kγ-AKT axis, and that PIK3IP1 inhibits binding with both ETA and PI3Kγ. Taken together, these findings reveal that PIK3IP1 plays an anti-ischemic role by reducing the likelihood of programmed cell death via interacting with the ETA-PI3Kr-AKT axis.


2022 ◽  
Author(s):  
Gautam Bandyopadhyay ◽  
Kechun Tang ◽  
Nicholas J.G. Webster ◽  
Geert van den Bogaart ◽  
Sushil K. Mahata

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 197
Author(s):  
Hameed Ullah ◽  
Amira Sayed Khan ◽  
Babar Murtaza ◽  
Aziz Hichami ◽  
Naim Akhtar Khan

Leptin, an anorectic hormone, regulates food intake, energy expenditure and body weight. We assessed the implication of tongue leptin in the modulation of oro-sensory detection of dietary fatty acids in mice. The RT-PCR analysis showed that mRNA encoding leptin and leptin receptor (Ob-Rb) was expressed in mice taste bud cells (TBC). Confocal microscopic studies showed that the lipid sensor CD36 was co-expressed with leptin in mice TBC. Silencing of leptin or Ob-Rb mRNA in tongue papillae upregulated preference for a long-chain fatty acid (LCFA), i.e., linoleic acid (LA), in a two-bottle paradigm in mice. Furthermore, tongue leptin application decreased the preference for the LCFA. These results suggest that tongue leptin exerts an inhibitory action on fatty acid preference. In isolated mice TBC, leptin decreased LCFA-induced increases in free intracellular calcium concentrations, [Ca2+]i. Leptin and LCFA induced the phosphorylation of ERK1/2 and STAT-3 and there were no additive or opposite effects of the two agents on the degree of phosphorylation. However, leptin, but not the LCFA, induced phosphoinositide-3-kinase (PI-3-K)-dependent Akt phosphorylation in TBC. Furthermore, leptin induced hyperpolarization, whereas LCFA induced depolarization in TBC. Our study demonstrates that tongue leptin exerts an inhibitory action on oro-sensory detection of a dietary fatty acid by interfering with Ca2+ signaling and membrane potential in mice TBC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xifeng Xiong ◽  
Nan Tang ◽  
Xudong Lai ◽  
Jinli Zhang ◽  
Weilun Wen ◽  
...  

Amentoflavone is an active phenolic compound isolated from Selaginella tamariscina over 40 years. Amentoflavone has been extensively recorded as a molecule which displays multifunctional biological activities. Especially, amentoflavone involves in anti-cancer activity by mediating various signaling pathways such as extracellular signal-regulated kinase (ERK), nuclear factor kappa-B (NF-κB) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and emerges anti-SARS-CoV-2 effect via binding towards the main protease (Mpro/3CLpro), spike protein receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Therefore, amentoflavone is considered to be a promising therapeutic agent for clinical research. Considering the multifunction of amentoflavone, the current review comprehensively discuss the chemistry, the progress in its diverse biological activities, including anti-inflammatory, anti-oxidation, anti-microorganism, metabolism regulation, neuroprotection, radioprotection, musculoskeletal protection and antidepressant, specially the fascinating role against various types of cancers. In addition, the bioavailability and drug delivery of amentoflavone, the molecular mechanisms underlying the activities of amentoflavone, the molecular docking simulation of amentoflavone through in silico approach and anti-SARS-CoV-2 effect of amentoflavone are discussed.


2021 ◽  
Vol 75 (12) ◽  
pp. 1037-1044
Author(s):  
Chiara Borsari ◽  
Matthias P. Wymann

Phosphoinositide 3-kinase (PI3K) plays a key role in a plethora of physiologic processes and controls cell growth, metabolism, immunity, cardiovascular and neurological function, and more. The discovery of wort-mannin as the first potent PI3K inhibitor (PI3Ki) in the 1990s provided rapid identification of PI3K-dependent processes, which drove the discovery of the PI3K/protein kinase B (PKB/Akt)/target of rapamycin (mTOR) pathway. Genetic mouse models and first PI3K isoform-specific inhibitors pinpointed putative therapeutic applications. The recognition of PI3K as target for cancer therapy drove subsequently drug development. Here we provide a brief journey through the emerging roles of PI3K to the development of preclinical and clinical PI3Ki candidates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zexi Yin ◽  
Xin Tian ◽  
Runying Zou ◽  
Xiangling He ◽  
Keke Chen ◽  
...  

Activated phosphoinositide 3-kinase δ syndrome (APDS) is an autosomal dominant primary immunodeficiency caused by acquired gene function mutation (GOF). APDS has a variety of clinical phenotypes, particularly recurrent respiratory infections and lymphoproliferation. Here we report a pediatric patient with APDS who presented with recurrent respiratory infections, lymphoproliferation, hepatosplenomegaly, bronchoscopy suggesting numerous nodular protrusions in the airways and a decrease in both T and B lymphocytes, and progression to plasmablastic lymphoma (PBL) after 1 year. Whole exome sequencing revealed a heterozygous mutation in the PIK3CD gene (c.3061 G>A p.E1021K). This is the first reported case of APDS combined with PBL and pediatricians should follow up patients with APDS regularly to be alert for secondary tumours.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiali Liu ◽  
Pangao Xu ◽  
Dekun Liu ◽  
Ruiqing Wang ◽  
Shengnan Cui ◽  
...  

Vascular endothelial injury is the initial stage of atherosclerosis (AS). Stimulating and activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway can regulate the expression of vascular endothelial cytokines, thus affecting the occurrence and development of AS. In addition, the PI3K/Akt signaling pathway can regulate the polarization and survival of macrophages and the expression of inflammatory factors and platelet function, thus influencing the progression of AS. In recent years, traditional Chinese medicine (TCM) has been widely recognized for its advantages of fewer side effects, multiple pathways, and multiple targets. Also, the research of TCM regulation of AS via the PI3K/Akt signaling pathway has achieved certain results. This study aimed to analyze the characteristics of the PI3K/Akt signaling pathway and its role in the pathogenesis of AS, as well as the role of Chinese medicine in regulating the PI3K/Akt signaling pathway. The findings are expected to provide a theoretical basis for the clinical treatment and pathological mechanism research of AS.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1907
Author(s):  
Pei-Shan Wu ◽  
Chih-Yang Wang ◽  
Pin-Shern Chen ◽  
Jui-Hsiang Hung ◽  
Jui-Hung Yen ◽  
...  

A metabolite isolated from fermented soybean, 8-hydroxydaidzein (8-OHD, 7,8,4′-trihydroxyisoflavone, NSC-678112), is widely used in ethnopharmacological research due to its anti-proliferative and anti-inflammatory effects. We reported previously that 8-OHD provoked reactive oxygen species (ROS) overproduction, and induced autophagy, apoptosis, breakpoint cluster region-Abelson murine leukemia viral oncogene (BCR-ABL) degradation, and differentiation in K562 human chronic myeloid leukemia (CML) cells. However, how 8-OHD regulates metabolism, the extracellular matrix during invasion and metastasis, and survival signaling pathways in CML remains largely unexplored. High-throughput technologies have been widely used to discover the therapeutic targets and pathways of drugs. Bioinformatics analysis of 8-OHD-downregulated differentially expressed genes (DEGs) revealed that Janus kinase/signal transducer and activator of transcription (JAK/STAT), matrix metalloproteinases (MMPs), c-Myc, phosphoinositide 3-kinase (PI3K)/AKT, and oxidative phosphorylation (OXPHOS) metabolic pathways were significantly altered by 8-OHD treatment. Western blot analyses validated that 8-OHD significantly downregulated cytosolic JAK2 and the expression and phosphorylation of STAT3 dose- and time-dependently in K562 cells. Zymography and transwell assays also confirmed that K562-secreted MMP9 and invasion activities were dose-dependently inhibited by 8-OHD after 24 h of treatment. RT-qPCR analyses verified that 8-OHD repressed metastasis and OXPHOS-related genes. In combination with DisGeNET, it was found that 8-OHD’s downregulation of PI3K/AKT is crucial for controlling CML development. A STRING protein–protein interaction analysis further revealed that AKT and MYC are hub proteins for cancer progression. Western blotting revealed that AKT phosphorylation and nuclear MYC expression were significantly inhibited by 8-OHD. Collectively, this systematic investigation revealed that 8-OHD exerts anti-CML effects by downregulating JAK/STAT, PI3K/AKT, MMP, and OXPHOS pathways, and MYC expression. These results could shed new light on the development of 8-OHD for CML therapy.


Cell Stress ◽  
2021 ◽  
Vol 5 (12) ◽  
pp. 176-182
Author(s):  
Clarissa Braun ◽  
Karl Katholnig ◽  
Christopher Kaltenecker ◽  
Monika Linke ◽  
Nyamdelger Sukhbaatar ◽  
...  

Programmed cell death protein 4 (PDCD4) exerts critical functions as tumor suppressor and in immune cells to regulate inflammatory processes. The phosphoinositide 3-kinase (PI3K) promotes degradation of PDCD4 via mammalian target of rapamycin complex 1 (mTORC1). However, additional pathways that may regulate PDCD4 expression are largely ill-defined. In this study, we have found that activation of the mitogen-activated protein kinase p38 promoted degradation of PDCD4 in macrophages and fibroblasts. Mechanistically, we identified a pathway from p38 and its substrate MAP kinase-activated protein kinase 2 (MK2) to the tuberous sclerosis complex (TSC) to regulate mTORC1-dependent degradation of PDCD4. Moreover, we provide evidence that TSC1 and TSC2 regulate PDCD4 expression via an additional mechanism independent of mTORC1. These novel data extend our knowledge of how PDCD4 expression is regulated by stress- and nutrient-sensing pathways.


Sign in / Sign up

Export Citation Format

Share Document