scholarly journals Unraveling the roles of Mast4 in amelogenesis via regulating DLX3 and stem cell maintenance of mouse incisors

2021 ◽  
Author(s):  
Dong-Joon Lee ◽  
Pyunggang Kim ◽  
Hyun-Yi Kim ◽  
Jinah Park ◽  
Seung-Jun Lee ◽  
...  

Asymmetric division of stem cells allows for maintenance of the cell population and differentiation for harmonious progress. Developing mouse incisors allows for examin ation of how the stem cell niche employs specific insights into essential phases. Microtubule associated serine/threonine kinase family member 4 (Mast4) knockout (KO) mice showed abnormal incisor development with weak hardness as the apical bud was reduced and preameloblasts were shifted to the apical side, resulting in Amelogenesis Imperfecta. In addition, Mast4) KO incisors showed abnormal enamel maturation, and stem cell maintenance was inhibited as amelogenesis accelerated. Distal-Less Homeobox 3 (DLX3), known to be a critical factor Tricho Dento Osseous (TDO) syndrome, is considered to be responsible for A melogenesis Imperfecta in humans. MAST4 directly binds to DLX3 and induces phosphorylation at three residues within the nuclear localization sites (NLS) that promote the nuclear translocation of DLX3. MAST4-mediated phosphorylation of DLX3 ultimately controls the transcription of DLX3 target genes, which are carbonic anhydrase and ion transporter genes involved in the pH regulation process during ameloblast maturation. Taken together, our data reveal a novel role of MAST4 as a critical regulator of ameloblast maturation, which controls DLX3 transcriptional activity.

Author(s):  
Debee Prasad Sahoo ◽  
Lon J. Van Winkle ◽  
Rocío I. Díaz de la Garza ◽  
Joseph G. Dubrovsky

In multicellular organisms, tissue generation, maintenance, and homeostasis depend on stem cells. Cellular metabolic status is an essential component of different differentiated states, from stem to fully differentiated cells. Threonine (Thr) metabolism has emerged as a critical factor required to maintain pluripotent/multipotent stem cells in both plants and animals. Thus, both kingdoms conserved or converged upon this fundamental feature of stem cell function. Here, we examine similarities and differences in Thr metabolism-dependent mechanisms supporting stem cell maintenance in these two kingdoms. We then consider common features of Thr metabolism in stem cell maintenance and predict and speculate that some knowledge about Thr metabolism and its role in stem cell function in one kingdom may apply to the other. Finally, we outline future research directions to explore these hypotheses.


Sign in / Sign up

Export Citation Format

Share Document