scholarly journals Bridging functional annotation gaps in non-model plant genes with AlphaFold, DeepFRI and small molecule docking

2021 ◽  
Author(s):  
Georgie Stephan ◽  
Benjamin Dugdale ◽  
Pradeep Deo ◽  
Rob Harding ◽  
James Dale ◽  
...  

Background: Functional annotation assigns descriptive biological meaning to genetic sequences. Limited availability of manually curated or experimentally validated plant genes from a diverse range of taxa poses a significant challenge for functional annotation in non-model organisms. Accurate computational approaches are required. We argue that recent breakthroughs in deep learning have the potential to not only narrow the functional annotation gap between non-model and model plant organisms, but also annotate and reveal novel functions even for genes with no homologs in public databases. Results: Deep learning models were applied to functionally annotate a set of previously published differentially expressed genes. Predicted protein structures and functional annotations were generated using the AlphaFold protein structure and DeepFRI protein language inference models respectively. The resulting structures and functional annotations were validated using small molecule docking experiments. DeepFRI and AlphaFold models not only correctly annotated differentially expressed genes, but also revealed detailed mechanisms involving protein-protein interactions. Conclusions: Deep learning models are capable of inferring novel functions and achieving high accuracy in functional annotation. Their increased use in plant research will result in major improvements in annotations for non-model plants that are underrepresented in genome databases. We illustrate how integrating protein structure prediction, functional residue prediction, and small molecule docking can infer plausible protein-protein interactions and yield additional mechanistic insights. This approach will aid in the selection of candidate genes for further study from differential expression studies that generate large gene lists.

2020 ◽  
Vol 27 (5) ◽  
pp. 359-369 ◽  
Author(s):  
Cheng Shi ◽  
Jiaxing Chen ◽  
Xinyue Kang ◽  
Guiling Zhao ◽  
Xingzhen Lao ◽  
...  

: Protein-related interaction prediction is critical to understanding life processes, biological functions, and mechanisms of drug action. Experimental methods used to determine proteinrelated interactions have always been costly and inefficient. In recent years, advances in biological and medical technology have provided us with explosive biological and physiological data, and deep learning-based algorithms have shown great promise in extracting features and learning patterns from complex data. At present, deep learning in protein research has emerged. In this review, we provide an introductory overview of the deep neural network theory and its unique properties. Mainly focused on the application of this technology in protein-related interactions prediction over the past five years, including protein-protein interactions prediction, protein-RNA\DNA, Protein– drug interactions prediction, and others. Finally, we discuss some of the challenges that deep learning currently faces.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 376
Author(s):  
Norhidayah Azmi ◽  
Nurulhasanah Othman

Amoebiasis is caused by Entamoeba histolytica and ranked second for parasitic diseases causing death after malaria. E. histolytica membrane and cytosolic proteins play important roles in the pathogenesis. Our previous study had shown several cytosolic proteins were found in the membrane fraction. Therefore, this study aimed to quantify the differential abundance of membrane and cytosolic proteins in membrane versus cytosolic fractions and analyze their predicted functions and interaction. Previous LC-ESI-MS/MS data were analyzed by PERSEUS software for the differentially abundant proteins, then they were classified into their functional annotations and the protein networks were summarized using PantherDB and STRiNG, respectively. The results showed 24 (44.4%) out of the 54 proteins that increased in abundance were membrane proteins and 30 were cytosolic proteins. Meanwhile, 45 cytosolic proteins were found to decrease in abundance. Functional analysis showed differential abundance proteins involved in the molecular function, biological process, and cellular component with 18.88%, 33.04% and, 48.07%, respectively. The STRiNG server predicted that the decreased abundance proteins had more protein–protein network interactions compared to increased abundance proteins. Overall, this study has confirmed the presence of the differentially abundant membrane and cytosolic proteins and provided the predictive functions and interactions between them.


2018 ◽  
Vol 18 (20) ◽  
pp. 1719-1736 ◽  
Author(s):  
Sharanya Sarkar ◽  
Khushboo Gulati ◽  
Manikyaprabhu Kairamkonda ◽  
Amit Mishra ◽  
Krishna Mohan Poluri

Background: To carry out wide range of cellular functionalities, proteins often associate with one or more proteins in a phenomenon known as Protein-Protein Interaction (PPI). Experimental and computational approaches were applied on PPIs in order to determine the interacting partners, and also to understand how an abnormality in such interactions can become the principle cause of a disease. Objective: This review aims to elucidate the case studies where PPIs involved in various human diseases have been proven or validated with computational techniques, and also to elucidate how small molecule inhibitors of PPIs have been designed computationally to act as effective therapeutic measures against certain diseases. Results: Computational techniques to predict PPIs are emerging rapidly in the modern day. They not only help in predicting new PPIs, but also generate outputs that substantiate the experimentally determined results. Moreover, computation has aided in the designing of novel inhibitor molecules disrupting the PPIs. Some of them are already being tested in the clinical trials. Conclusion: This review delineated the classification of computational tools that are essential to investigate PPIs. Furthermore, the review shed light on how indispensable computational tools have become in the field of medicine to analyze the interaction networks and to design novel inhibitors efficiently against dreadful diseases in a shorter time span.


2010 ◽  
Vol 104 (2) ◽  
pp. 118-125 ◽  
Author(s):  
Anja Berwanger ◽  
Susanne Eyrisch ◽  
Inge Schuster ◽  
Volkhard Helms ◽  
Rita Bernhardt

Sign in / Sign up

Export Citation Format

Share Document