biological process
Recently Published Documents


TOTAL DOCUMENTS

990
(FIVE YEARS 375)

H-INDEX

50
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Steffen Buessecker ◽  
Analissa F Sarno ◽  
Mark C Reynolds ◽  
Ramani Chavan ◽  
Jin Park ◽  
...  

Atmospheric nitrous oxide (N2O) is a potent greenhouse gas thought to be mainly derived from microbial metabolism as part of the denitrification pathway. Here, we report that in unexplored peat soils of Central and South America, N2O production can be driven by abiotic reactions (> 98 %) highly competitive to their enzymatic counterparts. Extracted soil iron positively correlated with in-situ abiotic N2O production determined by isotopic tracers. Moreover, we found that microbial N2O reduction accompanied abiotic production, essentially closing a coupled abiotic-biotic N2O cycle. Anaerobic N2O consumption occurred ubiquitously (pH 6.4-3.7), with proportions of diverse clade II N2O-reducers increasing with consumption rates. Our findings show denitrification in tropical peat soils is not a purely biological process, but rather a 'mosaic' of abiotic and biotic reduction reactions. We predict hydrological and temperature fluctuations differentially affect abiotic and biotic drivers and further contribute to the high N2O flux variation in the region.


2022 ◽  
Author(s):  
Marius Lange ◽  
Volker Bergen ◽  
Michal Klein ◽  
Manu Setty ◽  
Bernhard Reuter ◽  
...  

AbstractComputational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank (https://cellrank.org) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally.


2022 ◽  
Author(s):  
Fan Yuanchan ◽  
Dafu Chen ◽  
Rui Guo

Apis cerana is the original host for Nosema ceranae, a widespread fungal parasite resulting in bee nosemosis, which leads to severe losses for apiculture industry throughout the world. However, knowledge of N. ceranae infecting eastern honeybees is extremely limited. Currently, the mechanism underlying N. ceranae infection is still largely unknown. Based on our previously gained high-quality transcriptome datasets, comparative transcriptomic investigation was conducted in this work, with a focus on virulence factor-associated differentially expressed genes (DEGs). Microscopic observation showed that A. c. cerana workers midguts were effectively infected after inoculation with clean spores of N. ceranae. Totally, 1411, 604, and 38 DEGs were identified from NcCK vs. NcT1, NcCK vs. NcT2 and NcT1 vs. NcT2 comparison groups. Venn analysis showed that ten up-regulated genes and nine down-regulated ones were shared by aforementioned comparison groups. GO category indicated these DEGs were involved in a series of functional terms relevant to biological process, cellular component, and molecular function, such as metabolic process, cell part, and catalytic activity. Additionally, KEGG pathway analysis suggested that the DEGs were engaged in an array of pathways of great importance, such as metabolic pathway, glycolysis, and biosynthesis of secondary metabolites. Further, expression clustering analysis demonstrated that majority of genes encoding virulence factors such as ricin B lectins and polar tube proteins displayed apparent up-regulation, whereas a few virulence factor-associated genes such as hexokinase gene and 6-phosphofructokinase gene presented down-regulation during the fungal infection. Finally, the expression trend of 14 DEGs was confirmed by RT-qPCR, validating the reliability of our transcriptome datasets. These results together demonstrated that an overall alteration of the transcriptome of N. ceranae occurred during the infection of A. c. ceranae workers, and most of virulence factor-related genes were induced to activation to promote the fungal invasion. Our findings not only lay a foundation for clarifying the molecular mechanism underlying N. ceranae infection of eastern honeybee workers, but also shed light on developing novel targets for microsporidiosis control.


Author(s):  
Qianwen Liu ◽  
Brina Montoya

Microbially induced carbonate precipitation (MICP) is a sustainable biological process that catalyzes carbonate mineral precipitation within geomaterials. This study evaluates the performance and mechanisms of the MICP treatment for flocculating the oil sands fine tailings (FT). Column tests showed that the untreated FT did not decant during the 31 days. However, the MICP technique shortened the dewatering process. To elucidate the mechanisms of the MICP-induced flocculation of the FT, the diffuse double layer (DDL) thickness and microstructure of the specimens were evaluated. Three chemical equilibrium scenarios that gradually considered the MICP-biochemical reactions were explored to analyze the change of the DDL thickness. The results showed that increasing of ionic strength by urea hydrolysis decreased the DDL thickness. The fabric observation indicated that the specimens with the most calcium carbonate precipitation had the densest fabric. In summary, the MICP technique densified the fabric of FT via ureolysis process and precipitating minerals.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaoqin Si ◽  
Rui Lu ◽  
Zhitong Zhao ◽  
Xiaofeng Yang ◽  
Feng Wang ◽  
...  

AbstractNatural gas is one of the foremost basic energy sources on earth. Although biological process appears as promising valorization routes to transfer biomass to sustainable methane, the recalcitrance of lignocellulosic biomass is the major limitation for the production of mixing gas to meet the natural gas composition of pipeline transportation. Here we develop a catalytic-drive approach to directly transfer solid biomass to bio-natural gas which can be suitable for the current infrastructure. A catalyst with Ni2Al3 alloy phase enables nearly complete conversion of various agricultural and forestry residues, the total carbon yield of gas products reaches up to 93% after several hours at relative low-temperature (300 degrees Celsius). And the catalyst shows powerful processing capability for the production of natural gas during thirty cycles. A low-carbon footprint is estimated by a preliminary life cycle assessment, especially for the low hydrogen pressure and non-fossil hydrogen, and technical economic analysis predicts that this process is an economically competitive production process.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 178
Author(s):  
Mohamed Elhiti ◽  
Claudio Stasolla

Somatic embryogenesis (SE) is an in vitro biological process in which bipolar structures (somatic embryos) can be induced to form from somatic cells and regenerate into whole plants. Acquisition of the embryogenic potential in culture is initiated when some competent cells within the explants respond to inductive signals (mostly plant growth regulators, PRGs), and de-differentiate into embryogenic cells. Such cells, “canalized” into the embryogenic developmental pathway, are able to generate embryos comparable in structure and physiology to their in vivo counterparts. Genomic and transcriptomic studies have identified several pathways governing the initial stages of the embryogenic process. In this review, the authors emphasize the importance of the developmental signals required for the progression of embryo development, starting with the de-differentiation of somatic cells and culminating with tissue patterning during the formation of the embryo body. The action and interaction of PGRs are highlighted, along with the participation of master regulators, mostly transcription factors (TFs), and proteins involved in stress responses and the signal transduction required for the initiation of the embryogenic process.


2022 ◽  
Vol 23 (2) ◽  
pp. 712
Author(s):  
Pramod Shah ◽  
Chien-Sheng Chen

Cell-penetrating peptides (CPPs) have distinct properties to translocate across cell envelope. The key property of CPPs to translocation with attached molecules has been utilized as vehicles for the delivery of several potential drug candidates that illustrate the significant effect in in-vitro experiment but fail in in-vivo experiment due to selectively permeable nature of cell envelop. Penetratin, a well-known CPP identified from the third α-helix of Antennapedia homeodomain of Drosophila, has been widely used and studied for the delivery of bioactive molecules to treat cancers, stroke, and infections caused by pathogenic organisms. Few studies have demonstrated that penetratin directly possesses antimicrobial activities against bacterial and fungal pathogens; however, the mechanism is unknown. In this study, we have utilized the power of high-throughput Saccharomyces cerevisiae proteome microarrays to screen all the potential protein targets of penetratin. Saccharomyces cerevisiae proteome microarrays assays of penetratin followed by statistical analysis depicted 123 Saccharomyces cerevisiae proteins as the protein targets of penetratin out of ~5800 Saccharomyces cerevisiae proteins. To understand the target patterns of penetratin, enrichment analyses were conducted using 123 protein targets. In biological process: ribonucleoprotein complex biogenesis, nucleic acid metabolic process, actin filament-based process, transcription, DNA-templated, and negative regulation of gene expression are a few significantly enriched terms. Cytoplasm, nucleus, and cell-organelles are enriched terms for cellular component. Protein-protein interactions network depicted ribonucleoprotein complex biogenesis, cortical cytoskeleton, and histone binding, which represent the major enriched terms for the 123 protein targets of penetratin. We also compared the protein targets of penetratin and intracellular protein targets of antifungal AMPs (Lfcin B, Histatin-5, and Sub-5). The comparison results showed few unique proteins between penetratin and AMPs. Nucleic acid metabolic process and cellular component disassembly were the common enrichment terms for penetratin and three AMPs. Penetratin shows unique enrichment items that are related to DNA biological process. Moreover, motif enrichment analysis depicted different enriched motifs in the protein targets of penetratin, LfcinB, Histatin-5, and Sub-5.


Sign in / Sign up

Export Citation Format

Share Document