scholarly journals Changes in foot progression angle during gait reduce the knee adduction moment and do not increase hip moments in individuals with knee osteoarthritis

Author(s):  
Kirsten Seagers ◽  
Scott D Uhlrich ◽  
Julie A Kolesar ◽  
Madeleine Berkson ◽  
Janelle M Janeda ◽  
...  

People with knee osteoarthritis who adopt a modified foot progression angle (FPA) during gait often benefit from a reduction in the knee adduction moment and knee pain. It is unknown, however, whether changes in the FPA increase hip moments, a surrogate measure of hip loading, which may increase the risk of hip pain or osteoarthritis. This study examined how altering the FPA affects hip moments. Individuals with knee osteoarthritis walked on an instrumented treadmill with their baseline gait, 10° toe-in gait, and 10° toe-out gait. A musculoskeletal modeling package was used to compute joint moments from the experimental data. Fifty participants were selected from a larger study who reduced their peak knee adduction moment with a modified FPA. In this group, participants reduced the first peak of the knee adduction moment by 7.6% with 10° toe-in gait and reduced the second peak by 11.0% with 10 ° toe-out gait. Modifying the FPA reduced the early-stance hip abduction moment, at the time of peak hip contact force, by 4.3% ± 1.3% for 10° toe-in gait (p=0.005) and by 4.6% ± 1.1% for 10° toe-out gait (p<0.001) without increasing the flexion and internal rotation moments (p>0.15). In summary, when adopting a FPA modification that reduced the knee adduction moment, participants did not increase surrogate measures of hip loading.

2015 ◽  
Vol 40 (4) ◽  
pp. 447-453 ◽  
Author(s):  
Eric M Lamberg ◽  
Robert Streb ◽  
Marc Werner ◽  
Ian Kremenic ◽  
James Penna

Background: Knee osteoarthritis is a prevalent disease. Unloading the affected compartment using a brace is a treatment option. Objectives: To determine whether a decompressive knee brace alters loading in medial knee osteoarthritis following 2 and 8 weeks of use. Study design: Within subjects; pre- and post-testing. Methods: A total of 15 individuals with medial knee osteoarthritis attended four sessions: baseline, fitting, 2 weeks after fitting (post), and 8 weeks after fitting (final). A gait analysis was performed at baseline (without knee brace), post and final. Knee adduction impulse, first and second peak knee adduction moment, knee motion, and walking velocity were calculated. Participants also recorded hours and steps taken while wearing the brace. Results: On average, the brace was worn for more than 6 h/day. Through use of repeated-measures analysis of variance, it was determined that the knee adduction impulse and second peak knee adduction moment were reduced ( p < 0.05) at post and final compared to baseline (36% and 34% reduction in knee adduction impulse, 26% reduction in second peak knee adduction moment for post and final, respectively). Furthermore, participants walked faster with increased knee motion during stance. Conclusion: The studied decompressive brace was effective in reducing potentially detrimental forces at the knee—knee adduction impulse and second peak knee adduction moment during the stance phase of gait. Clinical relevance The data from this study suggest that use of a medial unloading brace can reduce potentially detrimental adduction moments at the knee. Clinicians should use this evidence to advocate for use of this noninvasive treatment for people presenting with medial knee osteoarthritis.


2018 ◽  
Vol 43 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Saad Jawaid Khan ◽  
Soobia Saad Khan ◽  
Juliana Usman ◽  
Abdul Halim Mokhtar ◽  
Noor Azuan Abu Osman

Background: Knee osteoarthritis is a major contributor to the global burden of disease. There is a need of reducing knee joint load and to improve balance and physical function among knee osteoarthritis patients. Objectives: To test the hypothesis that toe-out gait will reduce second peak knee adduction moment further and increase fall risk when combined with knee brace and laterally wedged insole in knee osteoarthritis patients. Study design: Single visit study with repeated measures. Methods: First and second peak knee adduction moments, fall risk and comfort level. First and second peak knee adduction moments were determined from three-dimensional gait analysis, completed under six randomized conditions: (1) natural, (2) knee brace, (3) knee brace + toe-out gait, (4) laterally wedged insole, (5) laterally wedged insole + toe-out gait, and (6) knee brace + laterally wedged insole + toe-out gait. Fall risk was assessed by Biodex Balance System using three randomized stability settings: (1) static, (2) moderate dynamic setting (FR12), and (3) high dynamic setting (FR8). Results: The reduction in first peak knee adduction moment and second peak knee adduction moment was greatest (7.16% and 25.55%, respectively) when toe-out gait combine with knee brace and laterally wedged insole. Significant increase in fall risk was observed with knee brace + laterally wedged insole + toe-out gait (42.85%) at FR12. Similar significant balance reductions were found at FR8 condition for knee brace + toe-out gait (35.71%), laterally wedged insole + toe-out gait (28.57%), and knee brace + laterally wedged insole + toe-out gait (50%) as compared to natural. However, knee brace decreased fall risk at FR12 by 28.57%. Conclusion: There is a synergistic effect of toe-out when combined with knee brace and laterally wedged insole concurrently in second peak knee adduction moment reduction but with a greater degree of fall risk. Simultaneous use of conservative treatments also decreases comfort level. Clinical relevance Patients with mild and moderate knee osteoarthritis are usually prescribed conservative treatment techniques. This study will provide an insight whether or not a combination of these techniques have a synergistic effect in reducing knee joint load.


2020 ◽  
Author(s):  
Scott D Uhlrich ◽  
Julie A Kolesar ◽  
Łukasz Kidziński ◽  
Melissa A Boswell ◽  
Amy Silder ◽  
...  

Abstract Objectives The goal of this study was to evaluate the importance of personalization when selecting foot progression angle modifications that aim to reduce the peak knee adduction moment in individuals with medial knee osteoarthritis. Design One hundred seven individuals with medial knee osteoarthritis walked on an instrumented treadmill with biofeedback instructing them to toe-in and toe-out by 5° and 10° relative to their self-selected foot progression angle. We selected individuals’ personalized foot progression angle as the modification that maximally reduced their larger knee adduction moment peak. Additionally, we used lasso regression to identify which secondary changes in kinematics made a 10° toe-in gait modification more effective at reducing the first knee adduction moment peak. Results Sixty-six percent of individuals reduced their larger knee adduction moment peak by at least 5% with a personalized foot progression angle modification, which is more than (p<0.001) the 54% and 23% of individuals who reduced it with a uniformly-assigned 10° toe-in or toe-out modification, respectively. When toeing-in, greater reductions in the first knee adduction moment peak were related to an increased frontal-plane tibia angle (knee more medial than ankle), a more valgus knee abduction angle, reduced contralateral pelvic drop, and a more medialized center of pressure in the foot reference frame. Conclusions Personalization increases the proportion of individuals with medial knee osteoarthritis who may benefit from modification of their foot progression angle.


2008 ◽  
Vol 16 (8) ◽  
pp. 883-889 ◽  
Author(s):  
D.J. Rutherford ◽  
C.L. Hubley-Kozey ◽  
K.J. Deluzio ◽  
W.D. Stanish ◽  
M. Dunbar

2012 ◽  
Vol 27 (5) ◽  
pp. 520-523 ◽  
Author(s):  
Crystal O. Kean ◽  
Rana S. Hinman ◽  
Kelly Ann Bowles ◽  
Flavia Cicuttini ◽  
Miranda Davies-Tuck ◽  
...  

2018 ◽  
Vol 57 ◽  
pp. 150-158 ◽  
Author(s):  
Rosie E. Richards ◽  
Josien C. van den Noort ◽  
Martin van der Esch ◽  
Marjolein J. Booij ◽  
Jaap Harlaar

2009 ◽  
Vol 33 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Robert J. Butler ◽  
Joaquin A. Barrios ◽  
Todd Royer ◽  
Irene S. Davis

The purpose of this study was to examine the effects of laterally wedged foot orthotic devices, used to treat knee osteoarthritis, on frontal plane mechanics at the rearfoot and hip during walking. Thirty individuals with diagnosed medial knee osteoarthritis were recruited for this study. Three dimensional kinematics and kinetics were recorded as the subjects walked in the laboratory at an intentional walking speed. Peak eversion, eversion excursion and peak eversion moment were increased while the peak knee adduction moment was reduced in the laterally wedged orthotic condition compared to the no wedge condition. In contrast, no changes were observed in the variables of interest at the hip. There was no significant relationship between the change in the peak frontal plane moment at the rearfoot and change in the peak frontal plane moment at the knee or hip as a result of the lateral wedge. Laterally wedged foot orthotic devices, used to treat knee osteoarthritis, do not influence hip mechanics. However, they do result in increased rearfoot eversion and inversion moment. Therefore, a full medical screen of the foot should occur before laterally wedged foot orthotic devices are prescribed as a treatment for knee osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document