scholarly journals Spike sorting with Gaussian mixture models

2018 ◽  
Author(s):  
Bryan C. Souza ◽  
Vítor Lopes-dos-Santos ◽  
João Bacelo ◽  
Adriano B. L. Tort

AbstractThe shape of extracellularly recorded action potentials is a product of several variables, such as the biophysical and anatomical properties of the neuron and the relative position of the electrode. This allows for isolating spikes of different neurons recorded in the same channel into clusters based on waveform features. However, correctly classifying spike waveforms into their underlying neuronal sources remains a main challenge. This process, called spike sorting, typically consists of two steps: (1) extracting relevant waveform features (e.g., height, width), and (2) clustering them into non-overlapping groups believed to correspond to different neurons. In this study, we explored the performance of Gaussian mixture models (GMMs) in these two steps. We extracted relevant waveform features using a combination of common techniques (e.g., principal components and wavelets) and GMM fitting parameters (e.g., standard deviations and peak distances). Then, we developed an approach to perform unsupervised clustering using GMMs, which estimates cluster properties in a data-driven way. Our results show that the proposed GMM-based framework outperforms previously established methods when using realistic simulations of extracellular spikes and actual extracellular recordings to evaluate sorting performance. We also discuss potentially better techniques for feature extraction than the widely used principal components. Finally, we provide a friendly graphical user interface in MATLAB to run our algorithm, which allows for manual adjustment of the automatic results.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bryan C. Souza ◽  
Vítor Lopes-dos-Santos ◽  
João Bacelo ◽  
Adriano B. L. Tort

2017 ◽  
Vol 34 (10) ◽  
pp. 1399-1414 ◽  
Author(s):  
Wanxia Deng ◽  
Huanxin Zou ◽  
Fang Guo ◽  
Lin Lei ◽  
Shilin Zhou ◽  
...  

2013 ◽  
Vol 141 (6) ◽  
pp. 1737-1760 ◽  
Author(s):  
Thomas Sondergaard ◽  
Pierre F. J. Lermusiaux

Abstract This work introduces and derives an efficient, data-driven assimilation scheme, focused on a time-dependent stochastic subspace that respects nonlinear dynamics and captures non-Gaussian statistics as it occurs. The motivation is to obtain a filter that is applicable to realistic geophysical applications, but that also rigorously utilizes the governing dynamical equations with information theory and learning theory for efficient Bayesian data assimilation. Building on the foundations of classical filters, the underlying theory and algorithmic implementation of the new filter are developed and derived. The stochastic Dynamically Orthogonal (DO) field equations and their adaptive stochastic subspace are employed to predict prior probabilities for the full dynamical state, effectively approximating the Fokker–Planck equation. At assimilation times, the DO realizations are fit to semiparametric Gaussian Mixture Models (GMMs) using the Expectation-Maximization algorithm and the Bayesian Information Criterion. Bayes’s law is then efficiently carried out analytically within the evolving stochastic subspace. The resulting GMM-DO filter is illustrated in a very simple example. Variations of the GMM-DO filter are also provided along with comparisons with related schemes.


Sign in / Sign up

Export Citation Format

Share Document