scholarly journals SlARF10, an auxin response factor, is required for chlorophyll and sugar accumulation during tomato fruit development

2018 ◽  
Author(s):  
Lihua Mei ◽  
Yujin Yuan ◽  
Mengbo Wu ◽  
Zehao Gong ◽  
Qian Zhang ◽  
...  

AbstractTomato green fruits photosynthesis contributes to fruit growth and carbon economy. Tomato auxin response factor 10 (SlARF10) is one of the members of ARF family. Our results showed that SlARF10 locates in the nucleus and has no transcriptional activity. SlARF10 was expressed in various tomato tissues, but highly expressed in green fruit. Up-regulation of SlARF10 produced dark green phenotype of fruits, whereas down-regulation of SlARF10 had light green phenotype. Autofluorescence and chlorophyll content analysis confirmed the phenotypes, which indicated that SlARF10 plays an important role in chlorophyll accumulation in tomato fruits. Up-regulation of SlARF10 increased the photochemical potential in tomato leaves and fruits. Furthermore, the SlARF10 up-regulating lines displayed improved accumulation of starch in fruits, whereas SlARF10 suppressed lines had inhibited starch accumulation. Up-regulation of SlARF10 increased the expression of AGPases, the starch biosynthesis genes. SlARF10 up-regulating lines had increased accumulation of SlGLK1 and SlGLK2 transcripts in fruits. The promoter sequence of SlGLK1 gene had two conserved ARF binding sites. SlARF10 may regulate the expression of SlGLK1, thus controlling chlorophyll accumulation, photosynthesis rates and sugars synthesis in fruits. Our study provided more insight on the link between auxin signaling, chloroplastic activity and sugar metabolism during the development of tomato fruits.AbbreviationsARFsAuxin Response FactorsRNAiRNA interferenceGLKGOLDEN2-LIKEDET1/hp2The DE-ETIOLATED 1DDB1UV-DAMAGED DNA-BINDING PROTEIN 1KNOXsClass I KNOTTED1-LIKE HOMEOBOXGC-MSGas Chromatography-Mass SpectrometryqRT-PCRQuantitative real time PCRTFsTranscription factorsWTWild-typeMRMiddle regionDB domainDNA binding domainCTDC-terminal interaction domainADTranscriptional activatorsRDTranscriptional repressorsB3N-terminal DNA-binding domainHighlightSlARF10 played an important role in the chlorophyll accumulation and photosynthesis in tomato fruits. SlARF10 was involved in starch accumulation by controlling the expression of starch synthesis related enzyme genes. SlARF10 may regulate the expression of SlGLK1, thus controlling chlorophyll accumulation, photosynthesis rates and sugars synthesis in tomato fruits.

1993 ◽  
Vol 13 (8) ◽  
pp. 4640-4647
Author(s):  
F E Johansen ◽  
R Prywes

The binding of serum response factor (SRF) to the c-fos serum response element has been shown to be essential for serum and growth factor activation of c-Fos. Since SRF is ubiquitously expressed, it has been difficult to measure the activity of SRF introduced into cells. To assay for functions of SRF in cells, we have changed its DNA binding specificity by fusing it to the DNA binding domain of GAL4. Transfection of GAL4-SRF constructs into cells has allowed us to identify SRF's transcriptional activation domain as well as domains which inhibit this activity. First, we found that the transcriptional activation domain maps to between amino acids 339 and 508 in HeLa cells and to between amino acids 414 and 508 in NIH 3T3 cells. Second, we show that in the context of GAL4-SRF constructs, there are two separate domains of SRF that can inhibit its activation domain. Although these domains overlap the DNA binding and dimerization domains of SRF, these functions were not required for inhibition. Finally, we show that one of the inhibitory domains is modular in that it can also inhibit activation when it is moved amino terminal to GAL4's DNA binding domain in an SRF-GAL4-SRF construct. The implications of these inhibitory domains for SRF regulation are discussed.


2006 ◽  
Vol 26 (11) ◽  
pp. 4134-4148 ◽  
Author(s):  
Alexia-Ileana Zaromytidou ◽  
Francesc Miralles ◽  
Richard Treisman

ABSTRACT The transcription factor serum response factor (SRF) interacts with its cofactor, MAL/MKL1, a member of the myocardin-related transcription factor (MRTF) family, through its DNA-binding domain. We define a seven-residue sequence within the conserved MAL B1 region essential and sufficient for complex formation. The neighboring Q-box sequence facilitates this interaction. The B1 and Q-box regions also have antagonistic effects on MAL nuclear import, but the residues involved are largely distinct. Both MAL and the ternary complex factor (TCF) family of SRF cofactors interact with a hydrophobic groove and pocket on the SRF DNA-binding domain. Unlike the TCFs, however, interaction of MAL with SRF is impaired by SRF αI-helix mutations that reduce DNA bending in the SRF-DNA complex. A clustered SRF αI-helix mutation strongly impairs MAL-SRF complex formation but does not affect DNA distortion in the MAL-SRF complex. MAL-SRF complex formation is facilitated by DNA binding. DNase I footprinting indicates that in the SRF-MAL complex MAL directly contacts DNA. These contacts, which flank the DNA sequences protected from DNase I by SRF, are required for effective MAL-SRF complex formation in gel mobility shift assays. We propose a model of MAL-SRF complex formation in which MAL interacts with SRF by the addition of a β-strand to the SRF DNA-binding domain β-sheet region, while SRF-induced DNA bending facilitates MAL-DNA contact.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Mary Galli ◽  
Arjun Khakhar ◽  
Zefu Lu ◽  
Zongliang Chen ◽  
Sidharth Sen ◽  
...  

1991 ◽  
Vol 11 (7) ◽  
pp. 3652-3659
Author(s):  
J R Manak ◽  
R Prywes

Casein kinase II (CKII) phosphorylates the mammalian transcription factor serum response factor (SRF) on a serine residue(s) located within a region of the protein spanning amino acids 70 to 92, thereby enhancing its DNA-binding activity in vitro. We report here that serine 83 appears to be the residue phosphorylated by CKII but that three other serines in this region can also be involved in phosphorylation and the enhancement of DNA-binding activity. A mutant that contained glutamate residues in place of these serines had only low-level binding activity; however, when the serines were replaced with glutamates and further mutations were made that increased the negative charge of the region, the resulting mutant showed a constitutively high level of binding equal to that achieved by phosphorylation of wild-type SRF. We have investigated the mechanism by which phosphorylation of SRF increases its DNA-binding activity. We have ruled out the possibilities that phosphorylation affects SRF dimerization or relieves inhibition due to masking of the DNA-binding domain by an amino-terminal region of the protein. Rather, using partial proteolysis to probe SRF's structure, we find that the conformation of SRF's DNA-binding domain is altered by phosphorylation.


1991 ◽  
Vol 11 (7) ◽  
pp. 3652-3659 ◽  
Author(s):  
J R Manak ◽  
R Prywes

Casein kinase II (CKII) phosphorylates the mammalian transcription factor serum response factor (SRF) on a serine residue(s) located within a region of the protein spanning amino acids 70 to 92, thereby enhancing its DNA-binding activity in vitro. We report here that serine 83 appears to be the residue phosphorylated by CKII but that three other serines in this region can also be involved in phosphorylation and the enhancement of DNA-binding activity. A mutant that contained glutamate residues in place of these serines had only low-level binding activity; however, when the serines were replaced with glutamates and further mutations were made that increased the negative charge of the region, the resulting mutant showed a constitutively high level of binding equal to that achieved by phosphorylation of wild-type SRF. We have investigated the mechanism by which phosphorylation of SRF increases its DNA-binding activity. We have ruled out the possibilities that phosphorylation affects SRF dimerization or relieves inhibition due to masking of the DNA-binding domain by an amino-terminal region of the protein. Rather, using partial proteolysis to probe SRF's structure, we find that the conformation of SRF's DNA-binding domain is altered by phosphorylation.


2001 ◽  
Vol 276 (13) ◽  
pp. 10413-10422 ◽  
Author(s):  
Madhu Gupta ◽  
Paul Kogut ◽  
Francesca J. Davis ◽  
Narasimhaswamy S. Belaguli ◽  
Robert J. Schwartz ◽  
...  

1993 ◽  
Vol 13 (8) ◽  
pp. 4640-4647 ◽  
Author(s):  
F E Johansen ◽  
R Prywes

The binding of serum response factor (SRF) to the c-fos serum response element has been shown to be essential for serum and growth factor activation of c-Fos. Since SRF is ubiquitously expressed, it has been difficult to measure the activity of SRF introduced into cells. To assay for functions of SRF in cells, we have changed its DNA binding specificity by fusing it to the DNA binding domain of GAL4. Transfection of GAL4-SRF constructs into cells has allowed us to identify SRF's transcriptional activation domain as well as domains which inhibit this activity. First, we found that the transcriptional activation domain maps to between amino acids 339 and 508 in HeLa cells and to between amino acids 414 and 508 in NIH 3T3 cells. Second, we show that in the context of GAL4-SRF constructs, there are two separate domains of SRF that can inhibit its activation domain. Although these domains overlap the DNA binding and dimerization domains of SRF, these functions were not required for inhibition. Finally, we show that one of the inhibitory domains is modular in that it can also inhibit activation when it is moved amino terminal to GAL4's DNA binding domain in an SRF-GAL4-SRF construct. The implications of these inhibitory domains for SRF regulation are discussed.


1999 ◽  
Vol 96 (9/10) ◽  
pp. 1580-1584 ◽  
Author(s):  
I. Ségalas ◽  
S. Desjardins ◽  
H. Oulyadi ◽  
Y. Prigent ◽  
S. Tribouillard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document