scholarly journals Parallel Evolution of Key Genomic Features and Cellular Bioenergetics Across the Marine Radiation of a Bacterial Phylum

2018 ◽  
Author(s):  
Eric W. Getz ◽  
Saima Sultana Tithi ◽  
Liqing Zhang ◽  
Frank O. Aylward

AbstractDiverse bacterial and archaeal lineages drive biogeochemical cycles in the global ocean, but the evolutionary processes that have shaped their genomic properties and physiological capabilities remain obscure. Here we track the genome evolution of the globally-abundant marine bacterial phylum Marinimicrobia across its diversification into modern marine environments and demonstrate that extant lineages have repeatedly switched between epipelagic and mesopelagic habitats. Moreover, we show that these habitat transitions have been accompanied by repeated and fundamental shifts in genomic organization, cellular bioenergetics, and metabolic modalities. Lineages present in epipelagic niches independently acquired genes necessary for phototrophy and environmental stress mitigation, and their genomes convergently evolved key features associated with genome streamlining. Conversely, lineages residing in mesopelagic waters independently acquired nitrate respiratory machinery and a variety of cytochromes, consistent with the use of alternative terminal electron acceptors in oxygen minimum zones (OMZs). Further, while surface water clades have retained an ancestral Na+-pumping respiratory complex, deep water lineages have largely replaced this complex with a canonical H+-pumping respiratory complex I, potentially due to the increased efficiency of the latter together with more energy-limiting environments deep in the ocean’s interior. These parallel evolutionary trends across disparate clades suggest that the evolution of key features of genomic organization and cellular bioenergetics in abundant marine lineages may in some ways be predictable and driven largely by environmental conditions and nutrient dynamics.

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Eric W. Getz ◽  
Saima Sultana Tithi ◽  
Liqing Zhang ◽  
Frank O. Aylward

ABSTRACTDiverse bacterial and archaeal lineages drive biogeochemical cycles in the global ocean, but the evolutionary processes that have shaped their genomic properties and physiological capabilities remain obscure. Here we track the genome evolution of the globally abundant marine bacterial phylumMarinimicrobiaacross its diversification into modern marine environments and demonstrate that extant lineages are partitioned between epipelagic and mesopelagic habitats. Moreover, we show that these habitat preferences are associated with fundamental differences in genomic organization, cellular bioenergetics, and metabolic modalities. Multiple lineages present in epipelagic niches independently acquired genes necessary for phototrophy and environmental stress mitigation, and their genomes convergently evolved key features associated with genome streamlining. In contrast, lineages residing in mesopelagic waters independently acquired nitrate respiratory machinery and a variety of cytochromes, consistent with the use of alternative terminal electron acceptors in oxygen minimum zones (OMZs). Further, while epipelagic clades have retained an ancestral Na+-pumping respiratory complex, mesopelagic lineages have largely replaced this complex with canonical H+-pumping respiratory complex I, potentially due to the increased efficiency of the latter together with the presence of the more energy-limiting environments deep in the ocean’s interior. These parallel evolutionary trends indicate that key features of genomic streamlining and cellular bioenergetics have occurred repeatedly and congruently in disparate clades and underscore the importance of environmental conditions and nutrient dynamics in driving the evolution of diverse bacterioplankton lineages in similar ways throughout the global ocean.IMPORTANCEUnderstanding long-term patterns of microbial evolution is critical to advancing our knowledge of past and present role microbial life in driving global biogeochemical cycles. Historically, it has been challenging to study the evolution of environmental microbes due to difficulties in obtaining genome sequences from lineages that could not be cultivated, but recent advances in metagenomics and single-cell genomics have begun to obviate many of these hurdles. Here we present an evolutionary genomic analysis of theMarinimicrobia, a diverse bacterial group that is abundant in the global ocean. We demonstrate that distantly relatedMarinimicrobiaspecies that reside in similar habitats have converged to assume similar genome architectures and cellular bioenergetics, suggesting that common factors shape the evolution of a broad array of marine lineages. These findings broaden our understanding of the evolutionary forces that have given rise to microbial life in the contemporary ocean.


2012 ◽  
Vol 9 (8) ◽  
pp. 3205-3212 ◽  
Author(s):  
M. Cornejo ◽  
L. Farías

Abstract. Oxygen minimum zones (OMZs), such as those found in the eastern South Pacific (ESP), are the most important N2O sources in the global ocean relative to their volume. N2O production is related to low O2 concentrations and high primary productivity. However, when O2 is sufficiently low, canonical denitrification takes place and N2O consumption can be expected. N2O distribution in the ESP was analyzed over a wide latitudinal and longitudinal range (from 5° to 30° S and from 71–76° to ~ 84° W) based on ~ 890 N2O measurements. Intense N2O consumption, driving undersaturations as low as 40%, was always associated with secondary NO2– accumulation (SNM), a good indicator of suboxic/anoxic O2 levels. First, we explore relationships between ΔN2O and O2 based on existing data of denitrifying bacteria cultures and field observations. Given the uncertainties in the O2 measurements, a second relationship between ΔN2O and NO2– (> 0.75 μM) was established for suboxic waters (O2 < 8 μM). We reproduced the apparent N2O production (ΔN2O) along the OMZ in ESP with high reliability (r2 = 0.73 p = 0.01). Our results will contribute to the quantification of the N2O that is recycled in O2 deficient waters, and improve the prediction of N2O behavior under future scenarios of OMZ expansion and intensification.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1840
Author(s):  
Camilo Febres-Molina ◽  
Jorge A. Aguilar-Pineda ◽  
Pamela L. Gamero-Begazo ◽  
Haruna L. Barazorda-Ccahuana ◽  
Diego E. Valencia ◽  
...  

ND1 subunit possesses the majority of the inhibitor binding domain of the human mitochondrial respiratory complex I. This is an attractive target for the search for new inhibitors that seek mitochondrial dysfunction. It is known, from in vitro experiments, that some metabolites from Annona muricata called acetogenins have important biological activities, such as anticancer, antiparasitic, and insecticide. Previous studies propose an inhibitory activity of bovine mitochondrial respiratory complex I by bis-tetrahydrofurans acetogenins such as annocatacin B, however, there are few studies on its inhibitory effect on human mitochondrial respiratory complex I. In this work, we evaluate the in silico molecular and energetic affinity of the annocatacin B molecule with the human ND1 subunit in order to elucidate its potential capacity to be a good inhibitor of this subunit. For this purpose, quantum mechanical optimizations, molecular dynamics simulations and the molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) analysis were performed. As a control to compare our outcomes, the molecule rotenone, which is a known mitochondrial respiratory complex I inhibitor, was chosen. Our results show that annocatacin B has a greater affinity for the ND1 structure, its size and folding were probably the main characteristics that contributed to stabilize the molecular complex. Furthermore, the MM/PBSA calculations showed a 35% stronger binding free energy compared to the rotenone complex. Detailed analysis of the binding free energy shows that the aliphatic chains of annocatacin B play a key role in molecular coupling by distributing favorable interactions throughout the major part of the ND1 structure. These results are consistent with experimental studies that mention that acetogenins may be good inhibitors of the mitochondrial respiratory complex I.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Karolina Szczepanowska ◽  
Katharina Senft ◽  
Juliana Heidler ◽  
Marija Herholz ◽  
Alexandra Kukat ◽  
...  

2016 ◽  
Vol 14 (12) ◽  
pp. 784-800 ◽  
Author(s):  
Morten Larsen ◽  
Philipp Lehner ◽  
Sergey M. Borisov ◽  
Ingo Klimant ◽  
Jan P. Fischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document