scholarly journals Coffee polyphenols prevent cognitive dysfunction and suppress amyloid β plaques in APP/PS2 transgenic mouse

2018 ◽  
Author(s):  
Keiko Ishida ◽  
Masaki Yamamoto ◽  
Koichi Misawa ◽  
Noriyasu Ota ◽  
Akira Shimotoyodome

AbstractEpidemiological studies have found that habitual coffee consumption may reduce the risk of Alzheimer’s disease. Coffee contains numerous phenolic compounds (coffee polyphenols) such as chlorogenic acids. However, evidence demonstrating the contribution of chlorogenic acids in preventing cognitive dysfunction induced by Alzheimer’s disease is limited. In this study, we investigated the effect of chlorogenic acids on prevention of cognitive dysfunction in APP/PS2 transgenic mouse model of Alzheimer’s disease. Five-week-old APP/PS2 mice were administered a diet supplemented with coffee polyphenols daily for 5 months. The memory and cognitive function of mice was determined using the novel object recognition test, the Morris water maze test, and the step-through passive avoidance test. We found that chronic treatment with coffee polyphenols prevented cognitive dysfunction and significantly reduced hippocampal Aβ deposition. We then determined the effect of 5-caffeoylquinic acid, one of the primary components of coffee polyphenols, on Aβ formation. 5-Caffeoylquinic acid did not inhibit Aβ fibrillation, but degraded Aβ fibrils in a dose-dependent manner. In conclusion, these results demonstrate that coffee polyphenols prevented cognitive deficits and alleviated Aβ plaque deposition via disaggregation of Aβ in APP/PS2 mouse.

2012 ◽  
Vol 61 (5) ◽  
pp. 739-748 ◽  
Author(s):  
Paula van Tijn ◽  
Frank J.A. Dennissen ◽  
Romina J.G. Gentier ◽  
Barbara Hobo ◽  
Denise Hermes ◽  
...  

2020 ◽  
pp. 1-19
Author(s):  
Hortense Fanet ◽  
Marine Tournissac ◽  
Manon Leclerc ◽  
Vicky Caron ◽  
Cyntia Tremblay ◽  
...  

Background: Alzheimer’s disease (AD) is a multifactorial disease, implying that multi-target treatments may be necessary to effectively cure AD. Tetrahydrobiopterin (BH4) is an enzymatic cofactor required for the synthesis of monoamines and nitric oxide that also exerts antioxidant and anti-inflammatory effects. Despite its crucial role in the CNS, the potential of BH4 as a treatment in AD has never been scrutinized. Objective: Here, we investigated whether BH4 peripheral administration improves cognitive symptoms and AD neuropathology in triple-transgenic mouse model of AD (3xTg-AD) mice, a model of age-related tau and amyloid-β (Aβ) neuropathologies associated with behavior impairment. Methods: Non-transgenic (NonTg) and 3xTg-AD mice were subjected to a control diet (5% fat – CD) or to a high-fat diet (35% fat - HFD) from 6 to 13 months to exacerbate metabolic disorders. Then, mice received either BH4 (15 mg/kg/day, i.p.) or vehicle for ten consecutive days. Results: This sub-chronic administration of BH4 rescued memory impairment in 13-month-old 3xTg-AD mice, as determined using the novel object recognition test. Moreover, the HFD-induced glucose intolerance was completely reversed by the BH4 treatment in 3xTg-AD mice. However, the HFD or BH4 treatment had no significant impact on Aβ and tau neuropathologies. Conclusion: Overall, our data suggest a potential benefit from BH4 administration against AD cognitive and metabolic symptoms accentuated by HFD consumption in 3xTg-AD mice, without altering classical neuropathology. Therefore, BH4 should be considered as a candidate for drug repurposing, at least in subtypes of cognitively impaired patients experiencing metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document