scholarly journals Extracting information from RNA SHAPE data: Kalman filtering approach

2018 ◽  
Author(s):  
Sana Vaziri ◽  
Patrice Koehl ◽  
Sharon Aviran

AbstractRNA SHAPE experiments have become important and successful sources of information for RNA structure prediction. In such experiments, chemical reagents are used to probe RNA backbone flexibility at the nucleotide level, which in turn provides information on base pairing and therefore secondary structure. Little is known, however, about the statistics of such SHAPE data. In this work, we explore different representations of noise in SHAPE data and propose a statistically sound framework for extracting reliable reactivity information from multiple SHAPE replicates. Our analyses of RNA SHAPE experiments underscore that a normal noise model is not adequate to represent their data. We propose instead a log-normal representation of noise and discuss its relevance. Under this assumption, we observe that processing simulated SHAPE data by directly averaging different replicates leads to bias. Such bias can be reduced by analyzing the data following a log transformation, either by log-averaging or Kalman filtering. Application of Kalman filtering has the additional advantage that a prior on the nucleotide reactivities can be introduced. We show that the performance of Kalman filtering is then directly dependent on the quality of that prior. We conclude the paper with guidelines on signal processing of RNA SHAPE data.


2017 ◽  
Vol 15 (06) ◽  
pp. 1750023 ◽  
Author(s):  
Soheila Montaseri ◽  
Fatemeh Zare-Mirakabad ◽  
Mohammad Ganjtabesh

Finding an effective measure to predict a more accurate RNA secondary structure is a challenging problem. In the last decade, an experimental method, known as selective [Formula: see text]-hydroxyl acylation analyzed by primer extension (SHAPE), was proposed to measure the tendency of forming a base pair for almost all nucleotides in an RNA sequence. These SHAPE reactivities are then utilized to improve the accuracy of RNA structure prediction. Due to a significant impact of SHAPE reactivity and in order to reduce the experimental costs, we propose a new model called HL-k-mer. This model simulates the SHAPE reactivity for each nucleotide in an RNA sequence. This is done by fetching the SHAPE reactivities for all sub-sequences of length k (k-mers) appearing in helix and loop regions. For evaluating the quality of simulated SHAPE data, ESD-Fold method is used based on the SHAPE data simulated by the HL-k-mer model ([Formula: see text]). Also, for further evaluation of simulated SHAPE data, three different methods are employed. We also extend this model to simulate the SHAPE data for the RNA pseudoknotted structure. The results indicate that the average accuracies of prediction using the SHAPE data simulated by our models (for [Formula: see text]) are higher compared to the experimental SHAPE data.



2011 ◽  
Vol 44 (4) ◽  
pp. 433-466 ◽  
Author(s):  
Kevin S. Keating ◽  
Elisabeth L. Humphris ◽  
Anna Marie Pyle

AbstractUnlike proteins, the RNA backbone has numerous degrees of freedom (eight, if one counts the sugar pucker), making RNA modeling, structure building and prediction a multidimensional problem of exceptionally high complexity. And yet RNA tertiary structures are not infinite in their structural morphology; rather, they are built from a limited set of discrete units. In order to reduce the dimensionality of the RNA backbone in a physically reasonable way, a shorthand notation was created that reduced the RNA backbone torsion angles to two (η and θ, analogous to φ and ψ in proteins). When these torsion angles are calculated for nucleotides in a crystallographic database and plotted against one another, one obtains a plot analogous to a Ramachandran plot (the η/θ plot), with highly populated and unpopulated regions. Nucleotides that occupy proximal positions on the plot have identical structures and are found in the same units of tertiary structure. In this review, we describe the statistical validation of the η/θ formalism and the exploration of features within the η/θ plot. We also describe the application of the η/θ formalism in RNA motif discovery, structural comparison, RNA structure building and tertiary structure prediction. More than a tool, however, the η/θ formalism has provided new insights into RNA structure itself, revealing its fundamental components and the factors underlying RNA architectural form.





Author(s):  
Riccardo Delli Ponti ◽  
Alexandros Armaos ◽  
Stefanie Marti ◽  
Gian Gaetano Tartaglia




2018 ◽  
Author(s):  
Riccardo Delli ponti ◽  
Alexandros Armaos ◽  
Stefanie Marti ◽  
Gian Gaetano Tartaglia

AbstractTo compare the secondary structures of RNA molecules we developed the CROSSalign method. CROSSalign is based on the combination of the Computational Recognition Of Secondary Structure (CROSS) algorithm to predict the RNA secondary structure at single-nucleotide resolution using sequence information, and the Dynamic Time Warping (DTW) method to align profiles of different lengths. We applied CROSSalign to investigate the structural conservation of long non-coding RNAs such as XIST and HOTAIR as well as ssRNA viruses including HIV. In a pool of sequences with the same secondary structure CROSSalign accurately recognizes repeat A of XIST and domain D2 of HOTAIR and outperforms other methods based on covariance modelling. CROSSalign can be applied to perform pair-wise comparisons and is able to find homologues between thousands of matches identifying the exact regions of similarity between profiles of different lengths. The algorithm is freely available at the webpage http://service.tartaglialab.com//new_submission/CROSSalign.



RNA ◽  
2010 ◽  
Vol 16 (6) ◽  
pp. 1108-1117 ◽  
Author(s):  
S. Quarrier ◽  
J. S. Martin ◽  
L. Davis-Neulander ◽  
A. Beauregard ◽  
A. Laederach




Sign in / Sign up

Export Citation Format

Share Document