scholarly journals Aberrant Visual Population Receptive Fields in Human Albinism

2019 ◽  
Author(s):  
Ethan J. Duwell ◽  
Erica N. Woertz ◽  
Jedidiah Mathis ◽  
Joseph Carroll ◽  
Edgar A. DeYoe

ABSTRACTRetinotopic organization is a fundamental feature of visual cortex thought to play a vital role in encoding spatial information. One important aspect of normal retinotopy is the representation of the right and left hemifields in contralateral visual cortex. However, in human albinism, many temporal retinal afferents decussate pathologically at the optic chiasm resulting in partially superimposed representations of opposite hemifields in each hemisphere of visual cortex. Previous fMRI studies in human albinism suggest that the right and left hemifield representations are superimposed in a mirror-symmetric manner. This should produce imaging voxels which respond to two separate regions in visual space mirrored across the vertical meridian. However, it is not yet clear how retino-cortical miswiring in albinism manifests at the level of single voxel population receptive fields. Here we used fMRI retinotopic mapping in conjunction with population receptive field (pRF) modeling to fit both single and dual pRF models to the visual responses of voxels in visual areas V1-V3 of five subjects with albinism. We found that subjects with albinism (but not controls) have sizable clusters of voxels with dual pRFs consistently corresponding to, but not fully coextensive with regions of hemifield overlap. These dual pRFs were typically positioned at roughly mirror image locations across the vertical meridian but were uniquely clustered within the visual field for each subject. We also found that single pRFs are larger in albinism than controls, and that single pRF sizes in the central visual field were anti-correlated with subjects’ foveal cone densities. Finally, dual pRF and aberrant hemifield representation characteristics varied significantly across subjects with albinism suggesting more central heterogeneity than previously appreciated.

2013 ◽  
Vol 31 (1) ◽  
pp. 85-98 ◽  
Author(s):  
HSIN-HAO YU ◽  
MARCELLO G.P. ROSA

AbstractAlthough the primary visual cortex (V1) is one of the most extensively studied areas of the primate brain, very little is known about how the far periphery of visual space is represented in this area. We characterized the physiological response properties of V1 neurons in anaesthetized marmoset monkeys, using high-contrast drifting gratings. Comparisons were made between cells with receptive fields located in three regions of V1, defined by eccentricity: central (3–5°), near peripheral (5–15°), and far peripheral (>50°). We found that orientation selectivity of individual cells was similar from the center to the far periphery. Nonetheless, the proportion of orientation-selective neurons was higher in central visual field representation than in the peripheral representations. In addition, there were similar proportions of cells representing all orientations, with the exception of the representation of the far periphery, where we detected a bias favoring near-horizontal orientations. The proportions of direction-selective cells were similar throughout V1. When the center/surround organization of the receptive fields was tested with gratings with varying diameters, we found that the population of neurons that was suppressed by large gratings was smaller in the far periphery, although the strength of suppression in these cells tended to be stronger. In addition, the ratio between the diameters of the excitatory centers and suppressive surrounds was similar across the entire visual field. These results suggest that, superimposed on the broad uniformity of V1, there are subtle physiological differences, which indicate that spatial information is processed differently in the central versus far peripheral visual fields.


1990 ◽  
Vol 64 (4) ◽  
pp. 1352-1360 ◽  
Author(s):  
M. R. Isley ◽  
D. C. Rogers-Ramachandran ◽  
P. G. Shinkman

1. The present experiments were designed to assess the effects of relatively large optically induced interocular torsional disparities on the developing kitten visual cortex. Kittens were reared with restricted visual experience. Three groups viewed a normal visual environment through goggles fitted with small prisms that introduced torsional disparities between the left and right eyes' visual fields, equal but opposite in the two eyes. Kittens in the +32 degrees goggle rearing condition experienced a 16 degrees counterclockwise rotation of the left visual field and a 16 degrees clockwise rotation of the right visual field; in the -32 degrees goggle condition the rotations were clockwise in the left eye and counterclockwise in the right. In the control (0 degree) goggle condition, the prisms did not rotate the visual fields. Three additional groups viewed high-contrast square-wave gratings through Polaroid filters arranged to provide a constant 32 degrees of interocular orientation disparity. 2. Recordings were made from neurons in visual cortex around the border of areas 17 and 18 in all kittens. Development of cortical ocular dominance columns was severely disrupted in all the experimental (rotated) rearing conditions. Most cells were classified in the extreme ocular dominance categories 1, 2, 6, and 7. Development of the system of orientation columns was also affected: among the relatively few cells with oriented receptive fields in both eyes, the distributions of interocular disparities in preferred stimulus orientation were centered near 0 degree but showed significantly larger variances than in the control condition.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 27 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Ryota Miyauchi ◽  
Dea-Gee Kang ◽  
Yukio Iwaya ◽  
Yôiti Suzuki

The brain apparently remaps the perceived locations of simultaneous auditory and visual events into a unified audio-visual space to integrate and/or compare multisensory inputs. However, there is little qualitative or quantitative data on how simultaneous auditory and visual events are located in the peripheral visual field (i.e., outside a few degrees of the fovea). We presented a sound burst and a flashing light simultaneously not only in the central visual field but also in the peripheral visual field and measured the relative perceived locations of the sound and flash. The results revealed that the sound and flash were perceptually located at the same location when the sound was presented at a 5° periphery of the flash, even when the participants’ eyes were fixed. Measurements of the unisensory locations of each sound and flash in a pointing task demonstrated that the perceived location of the sound shifted toward the front, while the perceived location of the flash shifted toward the periphery. As a result, the discrepancy between the perceptual location of the sound and the flash was around 4°. This suggests that the brain maps the unisensory locations of auditory and visual events into a unified audio-visual space, enabling it to generate unisensory spatial information about the events.


2017 ◽  
Author(s):  
Jesse Gomez ◽  
Vaidehi Natu ◽  
Brianna Jeska ◽  
Michael Barnett ◽  
Kalanit Grill-Spector

ABSTRACTReceptive fields (RFs) processing information in restricted parts of the visual field are a key property of neurons in the visual system. However, how RFs develop in humans is unknown. Using fMRI and population receptive field (pRF) modeling in children and adults, we determined where and how pRFs develop across the ventral visual stream. We find that pRF properties in visual field maps, V1 through VO1, are adult-like by age 5. However, pRF properties in face- and word-selective regions develop into adulthood, increasing the foveal representation and the visual field coverage for faces in the right hemisphere and words in the left hemisphere. Eye-tracking indicates that pRF changes are related to changing fixation patterns on words and faces across development. These findings suggest a link between viewing behavior of faces and words and the differential development of pRFs across visual cortex, potentially due to competition on foveal coverage.


1993 ◽  
Vol 10 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Robert Desimone ◽  
Jeffrey Moran ◽  
Stanley J. Schein ◽  
Mortimer Mishkin

AbstractThe classically defined receptive fields of V4 cells are confined almost entirely to the contralateral visual field. However, these receptive fields are often surrounded by large, silent suppressive regions, and stimulating the surrounds can cause a complete suppression of response to a simultaneously presented stimulus within the receptive field. We investigated whether the suppressive surrounds might extend across the midline into the ipsilateral visual field and, if so, whether the surrounds were dependent on the corpus callosum, which has a widespread distribution in V4. We found that the surrounds of more than half of the cells tested in the central visual field representation of V4 crossed into the ipsilateral visual field, with some extending up to at least 16 deg from the vertical meridian. Much of this suppression from the ipsilateral field was mediated by the corpus callosum, as section of the callosum dramatically reduced both the strength and extent of the surrounds. There remained, however, some residual suppression that was not further reduced by addition of an anterior commissure lesion. Because the residual ipsilateral suppression was similar in magnitude and extent to that found following section of the optic tract contralateral to the V4 recording, we concluded that it was retinal in origin. Using the same techniques employed in V4, we also mapped the ipsilateral extent of surrounds in the foveal representation of VI in an intact monkey. Results were very similar to those in V4 following commissural or contralateral tract sections. The findings suggest that V4 is a central site for long-range interactions both within and across the two visual hemifields. Taken with previous work, the results are consistent with the notion that the large suppressive surrounds of V4 neurons contribute to the neural mechanisms of color constancy and figure-ground separation.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1991 ◽  
Vol 66 (3) ◽  
pp. 762-776 ◽  
Author(s):  
P. Wilson ◽  
P. J. Snow

1. The effect of transection and ligation of the digital nerves of either one (toe 3) or two (toe 3 and toe 4) hindpaw digits, in the first postnatal week, on the tactile receptive fields (RFs) of spinocervical tract (SCT) neurons was studied in adult, alpha-chloralose-anesthetized cats. Immediately before recording, the digital nerves of the corresponding digit(s) of the opposite, intact hindpaw were transected, and the neonatally lesioned digital nerves were recut proximal to the transection neuroma. 2. In the medial part of the dorsal horn at the L6-L7 level, the digits of the hindlimb are represented in the RFs of SCT cells in a precise axial sequence from the most medial digit (toe 2) rostrally to the most lateral digit (toe 5) caudally. Acute denervation of one or two digits in the adult produced an area in the ipsilateral dorsal horn in which SCT cells lacked any RFs. When acute denervation was restricted to a single digit, the unresponsive region of dorsal horn was approximately 3 mm in length, and when two digits were denervated the unresponsive zone was approximately 6 mm long. Because the representation of the toes of the left hindpaw is a mirror image of that of the right, the rostrocaudal extent and position of the region of unresponsive SCT cells was used to assess the location of the borders of the chronically deprived region on the opposite side of the cord. 3. In all cats examined after neonatal denervation of toe 3, most (89%) of the SCT cells sampled within the chronically deprived toe 3 representation had RFs. These RFs were either on toe 2 (44%) or toe 4 (18%), and a large proportion of cells (38%) had multiple RFs with components on both toe 2 and toe 4. In most cases the cells fired briskly to displacement of hairs or light touch of the skin within these RFs. SCT cells with a RF on toe 2 and/or toe 4 were found throughout the whole 3-mm length of the chronically deprived toe 3 region, but cells with a RF on toe 2 were more commonly found than cells with a RF on toe 4 at axial distances greater than or equal to 1.5 mm from the boundary of the normal representations of the respective digit. 4. After chronic, neonatal denervation of both toe 3 and toe 4, 59% of SCT cells sampled overall had RFs, but there was a large degree of interanimal variation in the proportion of unresponsive neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


i-Perception ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 204166952093840
Author(s):  
Li Zhaoping

Consider a gray field comprising pairs of vertically aligned dots; in each pair, one dot is white the other black. When viewed in a peripheral visual field, these pairs appear horizontally aligned. By the Central-Peripheral Dichotomy, this flip tilt illusion arises because top-down feedback from higher to lower visual cortical areas is too weak or absent in the periphery to veto confounded feedforward signals from the primary visual cortex (V1). The white and black dots in each pair activate, respectively, on and off subfields of V1 neural receptive fields. However, the sub-fields’ orientations, and the preferred orientations, of the most activated neurons are orthogonal to the dot alignment. Hence, V1 reports the flip tilt to higher visual areas. Top-down feedback vetoes such misleading reports, but only in the central visual field.


1990 ◽  
Vol 4 (3) ◽  
pp. 205-216 ◽  
Author(s):  
W. Fries

AbstractThe projection from striate and prestriate visual cortex to the pontine nuclei has been studied in the macaque monkey by means of anterograde tracer techniques in order to assess the contribution of anatomically and functionally distinct visual cortical areas to the cortico-ponto-cerebellar loop. No projection to the pons was found from central or paracentral visual-field representations of V1 (striate cortex) or prestriate visual areas V2, and V4. Small patches of terminal labeling occurred after injections of tracer into more peripheral parts of V1, V2 and V3, and into V3A. The terminal fields were located most dorsolaterally in the anterior to middle third of the pons and were quite restricted in their rostro-caudal extent. Injections of V5, however, yielded substantial terminal labeling, stretching longitudinally throughout almost the entire pons. This projection could be demonstrated to arise from parts of V5 receiving input from central visual-field representations of striate cortex, whereas parts of V4 receiving similarly central visual-field input had no detectable projection to the pons. Its distribution may overlap to a large extent with the termination of tecto-pontine fibers and with the termination of fibers from visual areas in the medial bank (area V6 or P0) and lateral bank (area LIP) of the intraparietal sulcus, as well as from frontal eye fields (FEF). It appears that the main information relayed to the cerebellum by the visual corticopontine projection is related to movement in the field of view.


1999 ◽  
Vol 11 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Marie T. Banich ◽  
Kara D. Federmeier

In this study we examined Kosslyn's (1987) claim that the right hemisphere exhibits a relative superiority for processing metric spatial relations, whereas the left hemisphere exhibits a relative superiority for processing categorical spatial relations. In particular, we examined whether some failures to observe strong visual field (VF) advantages in previous studies might be due to practice effects that allowed individuals to process tasks in alternative manners (e.g., to process a metric task using a categorical strategy). We used two versions of a task previously employed by Hellige and Michimata (1989) in which individuals judge the metric (distance) or categorical (above/below) spatial relations between a bar and a dot. In one version, the position of the bar was held static. In another, the bar's position varied. This manipulation prevented participants from using the computer screen as a reference frame, forcing them to compute the spatial relationships on the basis of the relevant items only (i.e., the bar and the dot). In the latter, but not the former version of the task we obtained evidence supporting Kosslyn's hypothesis, namely, a significant right visual field (RVF) advantage for categorical spatial processing and a trend toward a left visual field (LVF) advantage for metric spatial processing. Furthermore, the pattern of results for trials on which information was presented centrally (CVF trials) was similar to that observed on RVF trials, whereas the pattern for trials in which identical information was presented in each visual field (BVF trials) was similar to that observed on LVF trials. Such a pattern is consistent with Kosslyn's suggestion that categorical processing is better suited for cells with small receptive fields and metric processing for cells with larger receptive fields.


Sign in / Sign up

Export Citation Format

Share Document