scholarly journals Calibrated feedback illumination for precise conventional fluorescence and PALM imaging applications

2019 ◽  
Author(s):  
A. Mancebo ◽  
L. DeMars ◽  
C. T. Ertsgaard ◽  
E. M. Puchner

AbstractSpatial light modulation using cost efficient digital mirror arrays (DMA) is finding broad applications in fluorescence microscopy due to the reduction of phototoxicity and bleaching and the ability to manipulate proteins in optogenetic experiments. However, the precise calibration of DMAs and their application to single-molecule localization microscopy (SMLM) remained a challenge because of non-linear distortions between the DMA and camera coordinate system caused by optical components. Here we develop a fast and easy to implement calibration procedure that determines these distortions by means of an optical feedback and matches the DMA and camera coordinate system with ~50 nm precision. As a result, a region from a fluorescence image can be selected with a higher precision for illumination compared to manual alignment of the DMA. We first demonstrate the application of our precisely calibrated light modulation by performing a proof-of concept fluorescence recovery after photobleaching experiment with the endoplasmic reticulum-localized protein IRE1 fused to GFP. Next, we develop a spatial feedback photoactivation approach for SMLM in which only regions of the cell are selected for photoactivation that contain photoactivatable fluorescent proteins. The reduced exposure of the cells to 405 nm light increases the possible imaging time by 44% until phototoxic effects cause a dominant fluorescence background and a change in the cell’s morphology. As a result, the mean number of reliable single molecule localizations is also significantly increased by 28%. Since the localization precision and the ability for single molecule tracking is not altered compared to traditional photoactivation of the entire field of view, spatial feedback photoactivation significantly improves the quality of SMLM images and the precision of single molecule tracking. Our calibration method therefore lays the foundation for improved SMLM with active feedback photoactivation far beyond the applications in this work.Statement of significanceActively patterned illumination in fluorescence microscopy can reduce bleaching and phototoxicity as well as actively manipulate proteins in optogenetic applications. Matching the coordinate system of the camera and the light patterning device such as digital mirror arrays (DMA) remains a challenge. We developed a fast and easy calibration procedure that determines and corrects for the transformation between the camera and DMA coordinate system with ~50 nm precision. Using this approach, we develop spatial feedback photoactivation for Single Molecule Localization Microscopy (SMLM) to photoswitch only intracellular regions containing photoswitchable fluorophores. Our results show a 44% improvement in the possible data acquisition time before phototoxic effects become detectable and a 28% increase in detected localizations. Spatial feedback photoactivation thus significantly improves SMLM experiments.


2020 ◽  
Vol 42 (4) ◽  
pp. 52-56
Author(s):  
Ilijana Vojnovic ◽  
Ulrike Endesfelder

The development of super-resolution microscopy techniques, which are able to achieve resolutions in the nanometre range and as such allow the visualization of subcellular structures and dynamics, has considerably expanded the possibilities of fluorescence microscopy in the life sciences. While a majority of these techniques require highly specialized hardware, single-molecule localization microscopy (SMLM) can be implemented on conventional widefield fluorescence microscopes. Here, we describe what technical upgrades are necessary and discuss some of the difficulties that can be encountered during sample preparation and imaging.



2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>



2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>





2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Mickaël Lelek ◽  
Melina T. Gyparaki ◽  
Gerti Beliu ◽  
Florian Schueder ◽  
Juliette Griffié ◽  
...  


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alan M. Szalai ◽  
Bruno Siarry ◽  
Jerónimo Lukin ◽  
David J. Williamson ◽  
Nicolás Unsain ◽  
...  

AbstractSingle-molecule localization microscopy enables far-field imaging with lateral resolution in the range of 10 to 20 nanometres, exploiting the fact that the centre position of a single-molecule’s image can be determined with much higher accuracy than the size of that image itself. However, attaining the same level of resolution in the axial (third) dimension remains challenging. Here, we present Supercritical Illumination Microscopy Photometric z-Localization with Enhanced Resolution (SIMPLER), a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope. SIMPLER requires no hardware modification whatsoever to a conventional total internal reflection fluorescence microscope and complements any 2D single-molecule localization microscopy method to deliver 3D images with nearly isotropic nanometric resolution. Performance examples include SIMPLER-direct stochastic optical reconstruction microscopy images of the nuclear pore complex with sub-20 nm axial localization precision and visualization of microtubule cross-sections through SIMPLER-DNA points accumulation for imaging in nanoscale topography with sub-10 nm axial localization precision.



2018 ◽  
Vol 148 (12) ◽  
pp. 123311 ◽  
Author(s):  
Koen J. A. Martens ◽  
Arjen N. Bader ◽  
Sander Baas ◽  
Bernd Rieger ◽  
Johannes Hohlbein


2021 ◽  
Author(s):  
◽  
Tim Niklas Baldering

Die Kommunikation von Zellen mit ihrer Umgebung wird durch Rezeptorproteine arrangiert, die sich in der Plasmamembran befinden. Membranrezeptoren werden durch die Bindung von extrazellulären Liganden, Pathogenen oder Zell-Zell-Interaktionen aktiviert, wodurch die Bildung eines aktiven Zustands gefördert wird, der eine intrazelluläre Reaktion einleitet. Eine Beschreibung auf molekularer Ebene, wie sich Membranrezeptoren in Proteinanordnungen organisieren und wie diese Proteinanordnungen eine spezifische funktionelle Aufgabe ausführen, ist der Ausgangspunkt für das Verständnis der molekularen Mechanismen, die Gesundheit und Krankheit zugrunde liegen. Die Fluoreszenzmikroskopie gibt Aufschluss über die Lage von Proteinen in Zellen, und mit der Einführung der höchstauflösenden Mikroskopie wurde der Nachweis einzelner Proteingruppierungen möglich. Eine Einschränkung der meisten Methoden der höchstauflösenden Mikroskopie ist, dass einzelne Komponenten einer Proteingruppierung optisch nicht aufgelöst werden können, was an der geringen Größe und dichten Packung der Bestandteile im Vergleich zur erreichbaren räumlichen Auflösung liegt. Eine Lösung, die für Einzelmolekül-Lokalisierungsmethoden gezeigt wurde, besteht darin, zusätzliche experimentelle Informationen in die Analyse zu implementieren, also „die Aufl sungsgrenze der höchstauflösenden Mikroskopie zu umgehen". Bei der Einzelmolekül-Bildgebung kann diese zusätzliche Information zum Beispiel die Kinetik von mehrfachen und wiederkehrenden Emissionsereignissen sein, die bei einzelnen Fluorophoren beobachtet werden, was als "Blinken" bezeichnet wird. Das Ziel dieser Arbeit war die Entwicklung einer höchstauflösenden Fluoreszenzmikroskopiemethode zur Detektion von Proteinmonomeren und -dimeren in der Plasmamembran von Zellen durch die Verwendung der kinetischen Information. Im ersten Teil dieser Arbeit wurden photoschaltbare fluoreszierende Proteine als Reporter verwendet, deren photoschaltbare Kinetik mit kinetischen Gleichungen analysiert wurden. Synthetische, genetische und zelluläre Referenzproteine wurden konstruiert und dienten als Kalibrierungsreferenzen für monomere und dimere Proteine. Im zweiten Teil dieser Arbeit wurde das kinetische Modell, das zur Annäherung des Häufigkeitshistogramms von Blinkereignissen einzelner Fluorophore verwendet wird, auf Oligomere höherer Ordnung erweitert. Ein Vergleich mit einem zuvor entwickelten Modell zeigte, dass das erweiterte Modell genauere Ergebnisse für Oligomere höherer Ordnung und Mischungen verschiedener Oligomere liefert. Zusätzlich wird die Anwesenheit von unerkannten Oligomeren berücksichtigt. Die erweiterte Theorie bietet somit die Grundlage, um größere Oligomere und Mischungen unterschiedlicher Stöchiometrie mit besserer Genauigkeit zu untersuchen. Im dritten Teil dieser Arbeit wurde eine Methode zur stöchiometrischen endogenen Markierung von Proteinen verwendet, um zwei Rezeptortyrosinkinasen, MET und EGFR, mit einem photoschaltbaren fluoreszierenden Protein zu markieren. Das Vorkommen von monomerem und dimerem MET-Rezeptor wurde auf der Plasmamembran von HEK293T- Zellen mittels quantitativer höchstauflösender Mikroskopie bestimmt. Der Diffusionskoeffizient und der Diffusionsmodus des MET-Rezeptors in lebenden HEK293T-Zellen wurden mit Einzelpartikelverfolgung gemessen. Dieser Teil der Arbeit zeigte, dass die Kombination von CRISPR/Cas12a-gestützter endogener Markierung und Einzelmolekül-Lokalisierungsmikroskopie ein leistungsfähiges Werkzeug zur Untersuchung der molekularen Organisation und Dynamik von Membranproteinen ist. Im vierten Teil dieser Arbeit wurde die Einzelmoleküldatenanalyse durch ein Softwaretool beschleunigt, das eine automatisierte und unvoreingenommene Detektion von Einzelmolekül-Emissionsereignissen ermöglicht. Der Anteil von Monomeren und Dimeren von fluoreszierenden Reportern wurde durch die Implementierung eines neuronalen Netzwerks bestimmt (die Software wurde von Alon Saguy geschrieben; Gruppe von Prof. Yoav Shechtman, Technion, Israel). Der oligomere Zustand der monomeren und dimeren Referenzproteine CD86 und CTLA-4 wurde erfolgreich bestimmt. Die automatisierte Detektion einzelner Proteingruppierungen ermöglichte die Analyse von MET-mEos4b in einzelnen Zellen, wodurch die Heterogenität zwischen den Zellen bestimmt und das Expressionsniveau des Rezeptors mit der Dimerisierung korreliert werden konnte. Zusammenfassend wurden in dieser Arbeit Ergebnisse zu elementaren Aspekten hin zu einer molekularen Quantifizierung von Proteinzahlen mittels Einzelmolekül- Lokalisationsmikroskopie generiert, die fluoreszierende Reporter, stöchiometrische Markierung von zellulären Proteinen und Bildanalyse umfassen. Das Potential dieser Entwicklungen wurde anhand der Beobachtung der Liganden-induzierten Verschiebung von monomeren zu dimeren MET-Rezeptoren in einzelnen HEK293T-Zellen gezeigt.



2021 ◽  
Vol 26 (02) ◽  
Author(s):  
Sunil Kumar Gaire ◽  
Yanhua Wang ◽  
Hao F. Zhang ◽  
Dong Liang ◽  
Leslie Ying


Sign in / Sign up

Export Citation Format

Share Document