scholarly journals Conformational dynamics at microsecond timescale in the RNA-binding regions of dsRNA-binding domains

2019 ◽  
Author(s):  
H Paithankar ◽  
J Chugh

AbstractDouble-stranded RNA-binding domains (dsRBDs) are involved in a variety of biological functions via recognition and processing of dsRNAs. Though the primary substrate of the dsRBDs are dsRNAs with A-form helical geometry; they are known to interact with structurally diverse dsRNAs. Here, we have employed two model dsRBDs – TAR-RNA binding protein and Adenosine deaminase that acts on RNA – to understand the role of intrinsic protein dynamics in RNA binding. We have performed a detailed characterization of the residue-level dynamics by NMR spectroscopy for the two dsRBDs. While the dynamics profiles at the ps-ns timescale of the two dsRBDs were found to be different, a striking similarity was observed in the μs-ms timescale dynamics for both the dsRBDs. Motions at fast μs timescale (kex > 50000 s−1) were found to be present not only in the RNA-binding residues but also in some allosteric residues of the dsRBDs. We propose that this intrinsic μs timescale dynamics observed independently in two distinct dsRBDs allows them to undergo conformational rearrangement that may aid dsRBDs to target substrate dsRNA from the pool of structurally different RNAs in cellular environment.Statement of SignificanceThis study reports for the first time the detailed characterization of microsecond timescale dynamics observed in RNA-binding regions of two distinct double-stranded RNA-binding domains (dsRBDs) using NMR relaxation dispersion experiments. dsRBDs have been known to target topologically distinct dsRNAs. However, the mechanistic details of the structural adaptation of proteins is not fully understood. We propose that the presence of such dynamics may have large-scale implications in understanding the RNA recognition mechanisms by the dsRBDs.


BMC Biology ◽  
2008 ◽  
Vol 6 (1) ◽  
Author(s):  
Stefan Rothenburg ◽  
Nikolaus Deigendesch ◽  
Madhusudan Dey ◽  
Thomas E Dever ◽  
Loubna Tazi


RNA ◽  
2013 ◽  
Vol 19 (3) ◽  
pp. 333-344 ◽  
Author(s):  
E. Dzananovic ◽  
T. R. Patel ◽  
S. Deo ◽  
K. McEleney ◽  
J. Stetefeld ◽  
...  


2007 ◽  
Vol 19 (3) ◽  
pp. 914-925 ◽  
Author(s):  
Feijie Wu ◽  
Lin Yu ◽  
Wenguang Cao ◽  
Yanfei Mao ◽  
Zhongyuan Liu ◽  
...  




2012 ◽  
Vol 80 (6) ◽  
pp. 1699-1706 ◽  
Author(s):  
Takashi Nagata ◽  
Kengo Tsuda ◽  
Naohiro Kobayashi ◽  
Mikako Shirouzu ◽  
Takanori Kigawa ◽  
...  


2018 ◽  
Author(s):  
Pravin Kumar Ankush Jagtap ◽  
Marisa Müller ◽  
Pawel Masiewicz ◽  
Sören von Bülow ◽  
Nele Merret Hollmann ◽  
...  

ABSTRACTMaleless (MLE) is an evolutionary conserved member of the DExH family of helicases in Drosophila. Besides its function in RNA editing and presumably siRNA processing, MLE is best known for its role in remodelling non-coding roX RNA in the context of X chromosome dosage compensation in male flies. MLE and its human orthologue, DHX9 contain two tandem double-stranded RNA binding domains (dsRBDs) located at the N-terminal region. The two dsRBDs are essential for localization of MLE at the X-territory and it is presumed that this involves binding roX secondary structures. However, for dsRBD1 roX RNA binding has so far not been described. Here, we determined the solution NMR structure of dsRBD1 and dsRBD2 of MLE in tandem and investigated its role in double-stranded RNA (dsRNA) binding. Our NMR data show that both dsRBDs act as independent structural modules in solution and are canonical, non-sequence-specific dsRBDs featuring non-canonical KKxAK RNA binding motifs. NMR titrations combined with filter binding experiments document the contribution of dsRBD1 to dsRNA binding in vitro. Curiously, dsRBD1 mutants in which dsRNA binding in vitro is strongly compromised do not affect roX2 RNA binding and MLE localization in cells. These data suggest alternative functions for dsRBD1 in vivo.



2019 ◽  
Vol 47 (8) ◽  
pp. 4319-4333 ◽  
Author(s):  
Pravin Kumar Ankush Jagtap ◽  
Marisa Müller ◽  
Pawel Masiewicz ◽  
Sören von Bülow ◽  
Nele Merret Hollmann ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document