human orthologue
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 19)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Peter De Wulf ◽  
Ksenia Smurova ◽  
Stefania Stancari ◽  
Carmela Irene ◽  
Giovanna Berto ◽  
...  

Abstract Kinetochores assemble on centromeres (CENs) via histone H3 variant CENP-A and low levels of CEN transcripts. RNA polymerase II (RNAPII) activity is restrained by the CEN histone code, while CEN RNA concentrations are reduced by the nuclear exosome. Using S. cerevisiae, we add kinase Rio1 to this scheme as it downregulates RNAPII, and promotes CEN RNA turnover via exoribonuclease Rat1. Transcription factor Cbf1 and the assembled kinetochore further restrain CEN transcription. CEN transcripts exist as long (up to 11,000nt) and short RNAs (119±40nt), which may underlie CEN identity and kinetochore recruitment. While also curtailed by Rio1, Rat1, and the exosome, periCEN RNAs (<200nt) accumulate at levels that are one order of magnitude higher than the CEN transcripts. Depleting Rio1 causes CEN and periCEN RNA buildup, kinetochore malformation, and chromosome loss. Depleting human orthologue RioK1 leads to CEN RNA accumulation and micronuclei formation, suggesting that Rio1/RioK1 activity at centromeres is conserved.


2021 ◽  
Author(s):  
Dong Won Kim ◽  
Kevin Tu ◽  
Alice Wei ◽  
Ashley Lau ◽  
Anabel Gonzalez-Gil ◽  
...  

It is unknown whether specific microglia are selectively induced by amyloid-β(Aβ), tau pathologies, or both in combination. To address this, we use single-cell RNA-sequencing to profile mice bearing both Aβ and tau pathologies during Alzheimer's disease (AD). We identify novel microglia subtypes induced in a disease stage-specific manner. We show that during early-stage disease, interferon signaling induces a subtype of microglia termed EADAM. During late-stage disease, a second microglia subtype termed LADAM is detected. While EADAM and LADAM-like microglia are observed in other neurodegenerative models, the magnitude and composition of subtype markers are distinct from microglia observed with AD-like pathology. The pattern of EADAM- and LADAM-associated gene expression is observed in microglia from human AD, during the early and late stages of disease, respectively. Furthermore, we observe that several siglec genes are selectively expressed in either EADAM or LADAM. Siglecg is expressed in white-matter-associated LADAM, and expression of the human orthologue of Siglecg is progressively elevated in AD-stage-dependent manner but not shown in non-AD tauopathy. Our findings imply that both Aβ and tau pathologies are required for disease stage-specific induction of EADAM and LADAM.


2021 ◽  
pp. mbc.E20-07-0457
Author(s):  
Yash Verma ◽  
Upasana Mehra ◽  
Dharmendra Kumar Pandey ◽  
Joy Kar ◽  
Xochitl Pérez-Martinez ◽  
...  

The synthesis of Cox1, the conserved catalytic-core subunit of Complex IV, a multi-subunit machinery of the mitochondrial oxidative phosphorylation (OXPHOS) system under environmental stress is not sufficiently addressed. In this study, we show that the putative YihA superfamily GTPase, Mrx8 is a bonafide mitochondrial protein required for Cox1 translation initiation and elongation during suboptimal growth condition at 16°C. Mrx8 was found in a complex with mitochondrial ribosomes, consistent with a role in protein synthesis. Cells expressing mutant Mrx8 predicted to be defective in guanine nucleotide binding and hydrolysis were compromised for robust cellular respiration. We show that requirement of Pet309 and Mss51 for cellular respiration is not bypassed by overexpression of Mrx8 and vice versa. Consistently the ribosomal association of Mss51 is independent of Mrx8. Significantly, we find that GTPBP8, the human orthologue, complements the loss of cellular respiration in Δmrx8 cells and GTPBP8 localizes to the mitochondria in mammalian cells. This strongly suggest a universal role of MRX8 family of proteins in regulating mitochondrial function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Viktor Vedelek ◽  
Attila L. Kovács ◽  
Gábor Juhász ◽  
Elham Alzyoud ◽  
Rita Sinka

AbstractThe human orthologue of the tumor suppressor protein FBW7 is encoded by the Drosophila archipelago (ago) gene. Ago is an F-box protein that gives substrate specificity to its SCF ubiquitin ligase complex. It has a central role in multiple biological processes in a tissue-specific manner such as cell proliferation, cellular differentiation, hypoxia-induced gene expression. Here we present a previously unknown tissue-specific role of Ago in spermatid differentiation. We identified a classical mutant of ago which is semi-lethal and male-sterile. During the characterization of ago function in testis, we found that ago plays role in spermatid development, following meiosis. We confirmed spermatogenesis defects by silencing ago by RNAi in testes. The ago mutants show multiple abnormalities in elongating and elongated spermatids, including aberration of the cyst morphology, malformed mitochondrial structures, and individualization defects. Additionally, we determined the subcellular localization of Ago protein with mCherry-Ago transgene in spermatids. Our findings highlight the potential roles of Ago in different cellular processes of spermatogenesis, like spermatid individualization, and regulation of mitochondrial morphology.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 497
Author(s):  
Dana Harshuk-Shabso ◽  
Noam Castel ◽  
Ran Israeli ◽  
Sheri Harari ◽  
Elah Pick

The COP9 signalosome (CSN) is a highly conserved eukaryotic multi-subunit enzyme, regulating cullin RING ligase activities and accordingly, substrate ubiquitination and degradation. We showed that the CSN complex of Saccharomyces cerevisiae that is deviated in subunit composition and in sequence homology harbors a highly conserved cullin deneddylase enzymatic core complex. We took advantage of the non-essentiality of the S. cerevisiae CSN-NEDD8/Rub1 axis, together with the enzyme-substrate cross-species activity, to develop a sensitive fluorescence readout assay, suitable for biochemical assessment of cullin deneddylation by CSNs from various origins. We also demonstrated that the yeast catalytic subunit, CSN5/Jab1, is targeted by an inhibitor that was selected for the human orthologue. Treatment of yeast by the inhibitor led to the accumulation of neddylated cullins and the formation of reactive oxygen species. Overall, our data revealed S. cerevisiae as a general platform that can be used for studies of CSN deneddylation and for testing the efficacy of selected CSN inhibitors.


2021 ◽  
Vol 7 (1) ◽  
pp. 49
Author(s):  
Alia A. Sagatova

Fungal pathogens present a challenge in medicine and agriculture. They also harm ecosystems and threaten biodiversity. The allylamine class of antimycotics targets the enzyme squalene monooxygenase. This enzyme occupies a key position in the sterol biosynthesis pathway in eukaryotes, catalyzing the rate-limiting reaction by introducing an oxygen atom to the squalene substrate converting it to 2,3-oxidosqualene. Currently, terbinafine—the most widely used allylamine—is mostly used for treating superficial fungal infections. The ability to better target this enzyme will have significant implications for human health in the treatment of fungal infections. The human orthologue can also be targeted for cholesterol-lowering therapeutics and in cancer therapies. This review will focus on the structural basis for improving the current therapeutics for fungal squalene monooxygenase.


Author(s):  
Behrooz Darbani

The solute carrier family 25 (SLC25) participates in the transport of metabolites and cofactors across the membranes of mitochondria, plastids, peroxisomes, and endoplasmic reticulum. By calling for genomic blocks involved in adjacent metabolic reactions, this report introduces gene clusters of the Slc25 subfamily 44, stilbene and chalcone synthases, and subunits of the mitochondrial electron transfer complexes. The Slc25A44 gene was found ubiquitously expressed and transcriptionally co-regulated with energy metabolism genes in human, mouse, and Arabidopsis thaliana. The Slc25A44s also had no homozygous missense mutation and were highly conserved at intra-species level with the majority of polymorphism present in the non-coding regions. When expressed in oocytes, AdSlc25A44 from Arachis duranensis showed transport activity for the common precursors of flavonoids, stilbenoids, and ubiquinone. Accordingly, AdSLC25A44 and its human orthologue HsSLC25A44 elevated the production of para-coumaric, 4-aminobenzoic, and 4-hydroxybenzoic acids in Saccharomyces cerevisiae strains designed to produce para-coumaric acid via different pathways. Moreover, the engineered SLC25 subfamily specific signature, i.e., AdSLC25A44LWW206IQF, had a stronger effect on para-coumaric acid secretion than the native variant. Importantly, the aerobic growth-rate of S. cerevisiae was significantly higher when expressing the AdSLC25A44, HsSLC25A44, or AdSLC25A44LWW206IQF. These results suggest that SLC25A44 is an essential mitochondrion-ER-nucleus zone transporter associated with metabolism of secondary metabolites and energy.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Efstathios Giotis ◽  
George Carnell ◽  
Erik Young ◽  
Saleena Ghanny ◽  
Patricia Soteropoulos ◽  
...  

The diversity of subtypes within Influenza A recently expanded with identification of H17N10 and H18N11 from bats. To study the tropism and zoonotic potential of these viruses, we successfully produced lentiviral pseudotypes bearing haemagglutinin H17 and neuraminidase N10. We investigated a range of cell lines from different species for their susceptibility to infection by these pseudotypes and show that a number of human haematopoietic cancer cell lines and the canine kidney MDCK II (but not MDCK I) cells are susceptible. Using microarrays and qRT-PCR we show that the dog leukocyte antigen DLA-DRA mRNA is over expressed in late passaged parental MDCK and commercial MDCK II cells, compared to early passaged parental MDCK and MDCK I cells, respectively. The human orthologue HLA-DRA encodes the alpha subunit of the MHC class II HLA-DR antigen-binding heterodimer. Small interfering RNA- or neutralizing antibody-targeting HLA-DRA, drastically reduced the susceptibility of Raji B cells to H17-PV. Conversely, over expression of HLA-DRA and its paralogue HLA-DRB1 on the surface of unsusceptible HEK293T/17 cells conferred susceptibility to H17-PV. The identification of HLA-DR as an H17N10 entry mediator will contribute to understanding the tropism of the virus and help to elucidate its zoonotic transmission. We also show that H17 pseudotypes can be efficiently neutralised by the broadly-neutralizing HA2 stalk monoclonal antibodies CR9114 and FI6. The lentiviral pseudotype system is a useful research tool, amenable for investigation of bat influenza tropism, restriction and pandemic preparedness, without safety issues of producing a replication-competent virus, to which the human population is naïve.


2020 ◽  
Vol 48 (12) ◽  
pp. 6996-7004 ◽  
Author(s):  
Daniel B Grabarczyk

Abstract The Tof1–Csm3 fork protection complex has a central role in the replisome—it promotes the progression of DNA replication forks and protects them when they stall, while also enabling cohesion establishment and checkpoint responses. Here, I present the crystal structure of the Tof1–Csm3 complex from Chaetomium thermophilum at 3.1 Å resolution. The structure reveals that both proteins together form an extended alpha helical repeat structure, which suggests a mechanical or scaffolding role for the complex. Expanding on this idea, I characterize a DNA interacting region and a cancer-associated Mrc1 binding site. This study provides the molecular basis for understanding the functions of the Tof1–Csm3 complex, its human orthologue the Timeless–Tipin complex and additionally the Drosophila circadian rhythm protein Timeless.


2020 ◽  
Author(s):  
Daniel B. Grabarczyk

AbstractThe Tof1-Csm3 fork protection complex has a central role in the replisome – it promotes the progression of DNA replication forks and protects them when they stall, while also enabling cohesion establishment and checkpoint responses. Here, I present the crystal structure of the Tof1-Csm3 complex from Chaetomium thermophilum at 3.1 Å resolution. The structure reveals that Tof1 is an extended alpha-helical repeat protein which is capped at its C-terminal end by Csm3, a small helical bundle protein. I also characterize the DNA binding properties of the complex and a cancer-associated peptide-binding site. This study provides the molecular basis for understanding the functions of the Tof1-Csm3 complex, its human orthologue the Timeless-Tipin complex and additionally the Drosophila circadian rhythm protein Timeless.


Sign in / Sign up

Export Citation Format

Share Document