microbial groups
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 174)

H-INDEX

45
(FIVE YEARS 7)

Pedosphere ◽  
2022 ◽  
Vol 32 (1) ◽  
pp. 75-89
Author(s):  
Sadaf KALAM ◽  
Anirban BASU ◽  
Appa Rao PODILE
Keyword(s):  

2022 ◽  
Vol 10 (1) ◽  
pp. 129
Author(s):  
Julia Meyer ◽  
Sheri Zakhary ◽  
Marie Larocque ◽  
Cassandre S. Lazar

Microbial communities play an important role in shallow terrestrial subsurface ecosystems. Most studies of this habitat have focused on planktonic communities that are found in the groundwater of aquifer systems and only target specific microbial groups. Therefore, a systematic understanding of the processes that govern the assembly of endolithic and sessile communities is still missing. This study aims to understand the effect of depth and biotic factors on these communities, to better unravel their origins and to compare their composition with the communities detected in groundwater. To do so, we collected samples from two profiles (~0–50 m) in aquifer sites in the Laurentians (Quebec, Canada), performed DNA extractions and Illumina sequencing. The results suggest that changes in geological material characteristics with depth represent a strong ecological and phylogenetical filter for most archaeal and bacterial communities. Additionally, the vertical movement of water from the surface plays a major role in shallow subsurface microbial assembly processes. Furthermore, biotic interactions between bacteria and eukaryotes were mostly positive which may indicate cooperative or mutualistic potential associations, such as cross-feeding and/or syntrophic relationships in the terrestrial subsurface. Our results also point toward the importance of sampling both the geological formation and groundwater when it comes to studying its overall microbiology.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Sana Romdhane ◽  
Aymé Spor ◽  
Samiran Banerjee ◽  
Marie-Christine Breuil ◽  
David Bru ◽  
...  

Abstract Background Soil microbial communities are major drivers of cycling of soil nutrients that sustain plant growth and productivity. Yet, a holistic understanding of the impact of land-use intensification on the soil microbiome is still poorly understood. Here, we used a field experiment to investigate the long-term consequences of changes in land-use intensity based on cropping frequency (continuous cropping, alternating cropping with a temporary grassland, perennial grassland) on bacterial, protist and fungal communities as well as on their co-occurrence networks. Results We showed that land use has a major impact on the structure and composition of bacterial, protist and fungal communities. Grassland and arable cropping differed markedly with many taxa differentiating between both land use types. The smallest differences in the microbiome were observed between temporary grassland and continuous cropping, which suggests lasting effects of the cropping system preceding the temporary grasslands. Land-use intensity also affected the bacterial co-occurrence networks with increased complexity in the perennial grassland comparing to the other land-use systems. Similarly, co-occurrence networks within microbial groups showed a higher connectivity in the perennial grasslands. Protists, particularly Rhizaria, dominated in soil microbial associations, as they showed a higher number of connections than bacteria and fungi in all land uses. Conclusions Our findings provide evidence of legacy effects of prior land use on the composition of the soil microbiome. Whatever the land use, network analyses highlighted the importance of protists as a key element of the soil microbiome that should be considered in future work. Altogether, this work provides a holistic perspective of the differential responses of various microbial groups and of their associations to agricultural intensification.


Author(s):  
M. C. Hinojosa ◽  
A. S. Cañate ◽  
P. C. Herrera

The pathologies caused by microbial groups generate health risks in domestic dogs and cats; showing a zoonotic potential and producing affections in humans. According to that background, the purpose of this study was to establish the main microorganisms causing clinical pathologies in domestic dogs and cats by reviewing medical records in a veterinary clinic in Valledupar, Colombia. In order to do that, a retrospective study was conducted with clinical histories of dogs and cats admitted during 2017 and 2018 to the veterinary clinic “Mis Mejores Amigos”. Based on the information, a descriptive, explanatory and statistical analysis was applied, the latter by means of a Sperman correlation to evaluate the relationship between race, sex, age, microbial group and pathology-pathogen. From a total of 462 reports of canines and felines admitted to the clinic, a total of 273 diagnoses were obtained. 4% of the felines and 24% of the canines were affected by some microbial group. The most prevalent microorganisms in canines were Ancylostoma spp. (9 %) Entamoeba histolytica (5%) Ehrlichia spp. (5%), and Isospora sp. (5%) while in felines were Haemobartonella felis (20%) and Haemobartonella spp. (17%). It was determined that there is only correlation between the age of felines and the microbial group that affects them, in addition to the pathology presented with the pathogen. It was observed a high percentage of Ancylostoma sp. (9%) in canines of mongrel and French Poodle breeds whilst in felines was found the bacterium Haemobartonella felis in 20% of the mongrel breeds.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Blessing Chidinma Nwachukwu ◽  
Ayansina Segun Ayangbenro ◽  
Olubukola Oluranti Babalola

Abstract Background Microbial communities inhabiting the rhizosphere play pivotal roles in determining plant health and yield. Manipulation of the rhizosphere microbial community is a promising means to enhance the productivity of economically viable and important agricultural crops such as sunflower (Helianthus annuus). This study was designed to gain insights into the taxonomic and functional structures of sunflower rhizosphere and bulk soil microbiome at two different locations (Sheila and Itsoseng) in South Africa. Results Microbial DNA extracted from the sunflower rhizosphere and bulk soils was subjected to next-generation sequencing using 16S amplicon sequencing technique. Firmicutes, Actnobacteria and Proteobacteria predominated sunflower rhizosphere soils. Firmicutes, Cyanobacteria, Deinococcus-Thermus and Fibrobacteres were positively influenced by Na+ and clay content, while Actinobacteria, Thaumarchaeota, Bacteroidetes, Planctomycetes, Aquificae and Chloroflexi were positively influenced by soil resistivity (Res) and Mg2+. The community-level physiological profiling (CLPP) analysis showed that the microbial communities in SHR and ITR used the amino acids tryptophan and malic acid efficiently. The metabolisms of these carbon substrates may be due to the dominant nature of some of the organisms, such as Actinobacteria in the soils. Conclusion The CLPP measurements of soil from sunflower rhizosphere were different from those of the bulk soil and the degree of the variations were based on the type of carbon substrates and the soil microbial composition. This study has shown the presence of certain taxa of rhizobacteria in sunflower rhizosphere which were positively influenced by Na+ and Mg2+, and taxa obtained from SHR and ITR were able to effectively utilized tryptophan and malic acid. Many unclassified microbial groups were also discovered and it is therefore recommended that efforts should further be made to isolate, characterize and identify these unclassified microbial species, as it might be plausible to discover new microbial candidates that can further be harnessed for biotechnological purpose.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3331
Author(s):  
Juraj Medo ◽  
Jana Žiarovská ◽  
Michal Ďuračka ◽  
Eva Tvrdá ◽  
Štefan Baňas ◽  
...  

Bacterial contamination of semen is an important factor connected to the health status of bulls that may significantly affect semen quality for artificial insemination. Moreover, some important bovine diseases may be transmitted through semen. Up to now, only a very limited number of complex studies describing the semen microbiome of bulls have been published, as many bacteria are hard to cultivate using traditional techniques. The 16S rRNA high-throughput sequencing strategy allows for the reliable identification of bacterial profiles of bovine semen together with the detection of noncultivable bacterial species. Fresh samples from Holstein Friesian breeding bulls (n = 55) were examined for the natural variability in the present bacteria. Semen doses were selected randomly from Slovak Biological Services in Nitra, Slovak Republic. The most predominant phyla within the whole dataset were Firmicutes (31%), Proteobacteria (22%), Fusobacteria (18%), Actinobacteria (13%) and Bacteroidetes (12%). Samples of semen were divided into two separate clusters according to their microbiome compositions using a cording partition around a medoids analysis. Microbiomes of the first cluster (CL1) of samples (n = 20) were based on Actinobacteria (CL1 average = 25%; CL = 28%) and Firmicutes (CL1 = 38%; CL2 = 27%), while the second cluster (CL2; n = 35) contained samples characterized by a high prevalence of Fusobacteria (CL1 = 4%; CL2 = 26%). Some important indicator microbial groups were differentially distributed between the clusters.


2021 ◽  
Vol 118 (47) ◽  
pp. e2102750118
Author(s):  
Suhyun Kim ◽  
Ilnam Kang ◽  
Jin-Won Lee ◽  
Che Ok Jeon ◽  
Stephen J. Giovannoni ◽  
...  

Heme, a porphyrin ring complexed with iron, is a metalloprosthetic group of numerous proteins involved in diverse metabolic and respiratory processes across all domains of life, and is thus considered essential for respiring organisms. Several microbial groups are known to lack the de novo heme biosynthetic pathway and therefore require exogenous heme from the environment. These heme auxotroph groups are largely limited to pathogens, symbionts, or microorganisms living in nutrient-replete conditions, whereas the complete absence of heme biosynthesis is extremely rare in free-living organisms. Here, we show that the acI lineage, a predominant and ubiquitous free-living bacterial group in freshwater habitats, is auxotrophic for heme, based on the experimental or genomic evidence. We found that two recently cultivated acI isolates require exogenous heme for their growth. One of the cultured acI isolates also exhibited auxotrophy for riboflavin. According to whole-genome analyses, all (n = 20) isolated acI strains lacked essential enzymes necessary for heme biosynthesis, indicating that heme auxotrophy is a conserved trait in this lineage. Analyses of >24,000 representative genomes for species clusters of the Genome Taxonomy Database revealed that heme auxotrophy is widespread across abundant but not-yet-cultivated microbial groups, including Patescibacteria, Marinisomatota (SAR406), Actinomarinales (OM1), and Marine groups IIb and III of Euryarchaeota. Our findings indicate that heme auxotrophy is a more common phenomenon than previously thought, and may lead to use of heme as a growth factor to increase the cultured microbial diversity.


Sign in / Sign up

Export Citation Format

Share Document