chromosome damage
Recently Published Documents


TOTAL DOCUMENTS

538
(FIVE YEARS 16)

H-INDEX

46
(FIVE YEARS 3)

Author(s):  
Rosa Sciuto ◽  
Sandra Rea ◽  
Sara Ungania ◽  
Antonella Testa ◽  
Valentina Dini ◽  
...  

Abstract Background 223Ra is currently used for treatment of metastatic castration resistant prostate cancer patients (mCRPC) bone metastases with fixed standard activity. Individualized treatments, based on adsorbed dose (AD) in target and non-target tissue, are absolutely needed to optimize efficacy while reducing toxicity of α-emitter targeted therapy. This is a pilot first in human clinical trial aimed to correlate dosimetry, clinical response and biological side effects to personalize 223Ra treatment. Methods Out of 20 mCRPC patients who underwent standard 223Ra treatment and dosimetry, in a subset of 5 patients the AD to target and non-target tissues was correlated with clinical effects and radiation-induced chromosome damages. Before each 223Ra administrations, haematological parameters, PSA and ALP values were evaluated. Additional blood samples were obtained baseline (T0), at 7 days (T7), 30 days (T30) and 180 days (T180) to evaluate chromosome damage. After administration WB planar 223Ra images were obtained at 2–4 and 18–24 h. Treatment response and toxicity were monitored with clinical evaluation, bone scan, 18F-choline-PET/CT, PSA value and ALP while haematological parameters were evaluated weekly after 223Ra injection and 2 months after last cycle. Results 1. a correlation between AD to target and clinical response was evidenced with threshold of 20 Gy as a cut-off to obtain tumor control; 2. the AD to red marrow was lower than 2 Gy in all the patients with no apparently correlation between dosimetry and clinical toxicity. 3. a high dose dependent increase of the number of dicentrics and micronuclei during the course of 223Ra therapy was observed and a linear correlation has been found between blood AD (BAD) and number of dicentrics. Conclusions This study provides some interesting preliminary evidence to be further investigated: dosimetry may be useful to identify a more appropriate 223Ra administered activity predicting AD to target tissue; a dose dependent complex chromosome damage occurs during 223Ra administration and this injury is more evident in heavily pre-treated patients; dosimetry could be used for radioprotection purpose. Trial registration The pilot study has been approved from the Ethics Committee of Regina Elena National Cancer Institute (N:RS1083/18–2111).


2021 ◽  
Author(s):  
T.V. Pritha Rao ◽  
Andrei Kuzminov

Bacterial rod-shaped cells experiencing irreparable chromosome damage should filament without other morphological changes. Thymineless death (TLD) strikes thymidine auxotrophs denied external thymine/thymidine (T) supplementation. Such T-starved cells cannot produce the DNA precursor dTTP and therefore stop DNA replication. Stalled replication forks in T-starved cells were always assumed to experience mysterious chromosome lesions, but recently TLD was found to be independent of origin-dependent DNA replication, with the chromosome still remaining the main TLD target. T-starvation also induces morphological changes, as if thymidine prevents cell envelope or cytoplasm problems that otherwise translate into chromosome damage. We used transmission electron microscopy to examine cytoplasm and envelope changes in T-starved E. coli cells, using treatment with a DNA gyrase inhibitor as a control for "pure" chromosome death. Besides the expected cell filamentation in response to both treatments, we see the following morphological changes specific for T-starvation, that might lead to chromosome damage: 1) significant cell widening; 2) nucleoid diffusion; 3) cell pole damage; 4) formation of numerous cytoplasmic bubbles. We conclude that T-starvation does impact both the cytoplasm and the cell envelope in ways that could potentially affect the chromosome. Importance Thymineless death is a dramatic and medically-important phenomenon, whose mechanisms remain a mystery. Unlike most other auxotrophs in the absence of the required supplement, thymidine-requiring E. coli mutants not only go static in the absence of thymidine, but rapidly die of chromosomal damage of unclear nature. Since this chromosomal damage is independent of replication, we examined fine morphological changes in cells undergoing thymineless death in order to identify what could potentially affect the chromosome. We report several cytoplasm and cell envelope changes that develop in thymidine-starved cells, but not in gyrase-inhibitor-treated cells (negative control), that could be linked to subsequent irreparable chromosome damage. This is the first electron microscopy study of cell undergoing "genetic death" due to irreparable chromosome lesions.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Dan Wang ◽  
Mo Dan ◽  
Yinglu Ji ◽  
Xiaochun Wu ◽  
Xue Wang ◽  
...  

AbstractTo understand the genotoxicity induced in the liver by silver nanoparticles (AgNPs) and silver ions, an engineered gold nanorod core/silver shell nanostructure (Au@Ag NR) and humanized hepatocyte HepaRG cells were used in this study. The involvement of oxidative stress and cell cycle arrest in the DNA and chromosome damage induced by 0.4–20 µg mL−1 Au@Ag NR were investigated by comet assay, γ-H2AX assay and micronucleus test. Further, the distribution of Au@Ag NR was analyzed. Our results demonstrated that both Ag+ and Au@Ag NR led to DNA cleavage and chromosome damage (clastogenicity) in HepaRG cells and that the Au@Ag NR retained in the nucleus may further release Ag+, aggravating the damages, which are mainly caused by cell cycle arrest and ROS formation. The results reveal the correlation between the intracellular accumulation, Ag+ ion release and the potential genotoxicity of AgNPs.


2020 ◽  
Author(s):  
Dan Wang ◽  
Mo Dan ◽  
Yinglu Ji ◽  
Xiaochun Wu ◽  
Xue Wang ◽  
...  

Abstract To understand the genotoxicity induced in the liver by silver nanoparticles (AgNPs) and silver ions, an engineered gold nanorod core/silver shell nanostructure (Au@Ag NR) and humanized hepatocyte HepaRG cells were used in this study. The involvement of oxidative stress and cell cycle arrest in the DNA and chromosome damage induced by 0.4 - 20 µg.mL-1 Au@Ag NR were investigated by comet assay, γ-H2AX assay, and micronucleus test. Further, the distribution of Au@Ag NR was analyzed. Our results demonstrated that both Ag+ and Au@Ag NR led to DNA cleavage and chromosome damage (clastogenicity) in HepaRG cells, and that the Au@Ag NR retained in the nucleus may further release Ag+, aggravating the damages, which are mainly caused by cell cycle arrest and ROS formation. The results reveal the correlation between the intracellular accumulation, Ag+ ion release as well as the potential genotoxicity of AgNPs.


2020 ◽  
Vol 18 (3) ◽  
pp. 367-389
Author(s):  
Natalia V. Eremina ◽  
Andrey D. Durnev

It is generally recognized that genotoxic damage have essential etiopathogenetic significance, and its prevention is an important measure to preserve human life and health. In the framework of this concept, literature information on studies of genotoxic biomarkers in patients with various hemodialysis regiments has been reviewed and summarized, and ways to prevent detectable genotoxicity have been identified. Based on the analysis of the known data, it was concluded that patients of this group have an increased level of DNA and chromosome damage in peripheral blood lymphocytes. Based on the results of individual studies, it was shown that one of the strategies for reducing genotoxicity may be the improvement of hemodialysis therapy methods and regimes, as well as pharmacological and nutritional correction of genotoxic effects.


2020 ◽  
Vol 64 (5) ◽  
pp. 779-790 ◽  
Author(s):  
Ajinkya S. Kawale ◽  
Patrick Sung

Abstract Homologous recombination (HR) is a major, conserved pathway of chromosome damage repair. It not only fulfills key functions in the removal of deleterious lesions such as DNA double-strand breaks (DSBs) and interstrand cross-links (ICLs), but also in replication fork repair and protection. Several familial and acquired cancer predisposition syndromes stem from defects in HR. In particular, individuals with mutations in HR genes exhibit predisposition to breast, ovarian, pancreatic, and prostate cancers, and they also show signs of accelerated aging. However, aberrant and untimely HR events can lead to the loss of heterozygosity, genomic rearrangements, and cytotoxic nucleoprotein intermediates. Thus, it is critically important that HR be tightly regulated. In addition to DNA repair, HR is also involved in meiotic chromosome segregation and telomere maintenance in cells that lack telomerase. In this review, we focus on the role of HR in DSB repair (DSBR) and summarize the current state of the field.


Neoplasma ◽  
2020 ◽  
Vol 67 (03) ◽  
pp. 668-676
Author(s):  
D. KADLCIKOVA ◽  
P. MUSILOVA ◽  
H. HRADSKA ◽  
M. PETROVOVA ◽  
I. SELINGEROVA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document