scholarly journals Dissecting Protein Complexes in Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts

2018 ◽  
Vol 2018 (9) ◽  
pp. pdb.prot100958 ◽  
Author(s):  
Jae-Geun Song ◽  
Sabine Petry
2004 ◽  
Vol 15 (12) ◽  
pp. 5318-5328 ◽  
Author(s):  
Stéphane Brunet ◽  
Teresa Sardon ◽  
Timo Zimmerman ◽  
Torsten Wittmann ◽  
Rainer Pepperkok ◽  
...  

TPX2 has multiple functions during mitosis, including microtubule nucleation around the chromosomes and the targeting of Xklp2 and Aurora A to the spindle. We have performed a detailed domain functional analysis of TPX2 and found that a large N-terminal domain containing the Aurora A binding peptide interacts directly with and nucleates microtubules in pure tubulin solutions. However, it cannot substitute the endogenous TPX2 to support microtubule nucleation in response to Ran guanosine triphosphate (GTP) and spindle assembly in egg extracts. By contrast, a large C-terminal domain of TPX2 that does not bind directly to pure microtubules and does not bind Aurora A kinase rescues microtubule nucleation in response to RanGTP and spindle assembly in TPX2-depleted extract. These and previous results suggest that under physiological conditions, TPX2 is essential for microtubule nucleation around chromatin and functions in a network of other molecules, some of which also are regulated by RanGTP.


Cell ◽  
2013 ◽  
Vol 152 (4) ◽  
pp. 768-777 ◽  
Author(s):  
Sabine Petry ◽  
Aaron C. Groen ◽  
Keisuke Ishihara ◽  
Timothy J. Mitchison ◽  
Ronald D. Vale

2021 ◽  
Author(s):  
George Cameron ◽  
Hasan Yardimci

Abstract Cell-free extracts from Xenopus laevis eggs are a model system for studying chromosome biology. Xenopus egg extracts can be synchronised in different cell cycle stages, making them useful for studying DNA replication, DNA repair and chromosome organisation. Combining single-molecule approaches with egg extracts is an exciting development being used to reveal molecular mechanisms that are difficult to study using conventional approaches. Fluorescence-based single-molecule imaging of surface-tethered DNAs has been used to visualise labelled protein movements on stretched DNA, the dynamics of DNA–protein complexes and extract-dependent structural rearrangement of stained DNA. Force-based single-molecule techniques are an alternative approach to measure mechanics of DNA and proteins. In this essay, the details of these single-molecule techniques, and the insights into chromosome biology they provide, will be discussed.


Sign in / Sign up

Export Citation Format

Share Document