Regulation of Epithelial Cell Polarity: A View from the Cell Surface

1992 ◽  
Vol 57 (0) ◽  
pp. 621-630 ◽  
Author(s):  
W.J. Nelson ◽  
R. Wilson ◽  
D. Wollner ◽  
R. Mays ◽  
H. McNeill ◽  
...  
2006 ◽  
Vol 291 (4) ◽  
pp. F790-F795 ◽  
Author(s):  
Mahesh Basireddy ◽  
Jason T. Lindsay ◽  
Anupam Agarwal ◽  
Daniel F. Balkovetz

Induction of heme oxygenase-1 (HO-1) in renal tubules occurs as an adaptive and beneficial response in acute renal failure (ARF) following ischemia and nephrotoxins. Using an in vitro model of polarized Madin-Darby canine kidney (MDCK) epithelial cells, we examined apical and basolateral cell surface sensitivity to HO-1 induction by heme. Basolateral exposure to 5 μM hemin (heme chloride) resulted in higher HO-1 induction than did apical exposure. The peak induction of HO-1 by basolateral application of hemin occurred between 12 and 18 h of exposure and was dose dependent. Similar cell surface sensitivity to hemin-induced HO-1 expression was observed using a mouse cortical collecting duct cell line (94D cells). Hepatocyte growth factor (HGF) is known to decrease cell polarity of MDCK cells. Following pretreatment with HGF, apically applied hemin gave greater stimulation of HO-1 expression, whereas HGF alone did not induce HO-1. We also examined the effect of hypoxia on hemin-mediated HO-1 induction. MDCK cells were subjected to hypoxia (1% O2) for 24 h to simulate the effects of ischemic ARF. Under hypoxic conditions, both apical as well as basolateral surfaces of MDCK were more sensitive to HO-1 induction by hemin. Hypoxia alone did not induce HO-1 but appeared to potentiate both apical and basolateral sensitivity to hemin-mediated induction. These data demonstrate that the induction of HO-1 expression in polarized renal epithelia by heme is achieved primarily via basolateral exposure. However, under conditions of altered renal epithelial cell polarity and hypoxia, increased HO-1 induction occurs following apical exposure to heme.


1999 ◽  
Vol 79 (1) ◽  
pp. 73-98 ◽  
Author(s):  
CHARLES YEAMAN ◽  
KENT K. GRINDSTAFF ◽  
W. JAMES NELSON

Yeaman, Charles, Kent K. Grindstaff, and W. James Nelson. New Perspectives on Mechanisms Involved in Generating Epithelial Cell Polarity. Physiol. Rev. 79: 73–98, 1999. — Polarized epithelial cells form barriers that separate biological compartments and regulate homeostasis by controlling ion and solute transport between those compartments. Receptors, ion transporters and channels, signal transduction proteins, and cytoskeletal proteins are organized into functionally and structurally distinct domains of the cell surface, termed apical and basolateral, that face these different compartments. This review is about mechanisms involved in the establishment and maintenance of cell polarity. Previous reports and reviews have adopted a Golgi-centric view of how epithelial cell polarity is established, in which the sorting of apical and basolateral membrane proteins in the Golgi complex is a specialized process in polarized cells, and the generation of cell surface polarity is a direct consequence of this process. Here, we argue that events at the cell surface are fundamental to the generation of cell polarity. We propose that the establishment of structural asymmetry in the plasma membrane is the first, critical event, and subsequently, this asymmetry is reinforced and maintained by delivery of proteins that were constitutively sorted in the Golgi. We propose a hierarchy of stages for establishing cell polarity.


Development ◽  
2017 ◽  
Vol 144 (9) ◽  
pp. 1725-1734 ◽  
Author(s):  
Dene L. Farrell ◽  
Ori Weitz ◽  
Marcelo O. Magnasco ◽  
Jennifer A. Zallen

Sign in / Sign up

Export Citation Format

Share Document