breast epithelial cell
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 46)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Jing Peng ◽  
Danhua Zhang

Objective: The present research set out to ascertain the roles of CCL21 and CBS in breast cancer (BC) cell biological behaviors and the relationship of CCL21 and CBS expression with the clinicopathological features of patients with BC. Methods: Immunohistochemistry of CCL21 or CBS was performed in 18 intraductal cancer tissues, 124 invasive BC tissues, 50 paraneoplastic tissues, 50 lobular hyperplasia tissues, and 30 normal breast tissues. For cell experiments, two human BC cell lines (MDA-MB-231 and MCF-7) and a human breast epithelial cell line (MCF-10A) were utilized to detect the expression of CCL21 and CBS. After loss- and gain-of-function assays for CCL21 or CBS, the expression of CBS and CCL21 was measured by qRT-PCR and Western blot. Additionally, BC cell proliferation was assessed by MTT assay and EdU staining, and BC cell migration was determined by scratch test and Transwell assay. Results: In the clinical data, the positive rate of CCL21 or CBS was significantly higher in invasive BC tissues than in intraductal BC tissues, lobular hyperplasia tissues, paraneoplastic tissues, and normal breast tissues (P < 0.05 or P < 0.01). CBS or CCL21 expression shared close association with the clinicopathological characteristic and the poor prognosis of BC patients. In cell experiments, overexpression of CCL21 or CBS enhanced the proliferative and migratory abilities of BC cells. Conclusion: CCL21 and CBS promoted BC cell migration and proliferation. CCL21 or CBS expression was strongly related to the poor prognosis of BC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juanjuan He ◽  
Jing Wang ◽  
Teng Li ◽  
Kunlun Chen ◽  
Songchao Li ◽  
...  

BackgroundTriple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer owing to a lack of effective targeted therapy and acquired chemoresistance. Here, we explored the function and mechanism of shank-interacting protein-like 1 (SIPL1) in TNBC progression.MethodsSIPL1 expression was examined in human TNBC tissues and cell lines by quantitative reverse transcription PCR, western blot, and immunohistochemistry. SIPL1 overexpression and silenced cell lines were established in BT-549 and MDA-MB-231 cells. The biological functions of SIPL1 in TNBC were studied in vitro using the CCK-8 assay, CellTiter-Glo Luminescent Cell Viability assay, caspase-3/8/9 assay, wound healing assay, and transwell assay and in vivo using a nude mouse model. The potential mechanisms underlying the effects of SIPL1 on TNBC progression were explored using bioinformatics analysis, luciferase reporter assays, and chromatin immunoprecipitation followed by qPCR.ResultsSIPL1 expression was higher in human TNBC tissues and cell lines than in adjacent normal tissues and a breast epithelial cell line (MCF10A). High expression of SIPL1 was positively correlated with poor overall and disease-free survival in patients with TNBC. SIPL1 overexpression elevated and SIPL1 silencing repressed the malignant phenotypes of TNBC cells in vitro. SIPL1 overexpression promoted xenograft tumor growth in vivo. Myc-associated zinc-finger protein (MAZ) transcriptionally activated SIPL1. Finally, we found that SIPL1 promoted TNBC malignant phenotypes via activation of the AKT/NF-κB signaling pathways.ConclusionsThese results indicate that the MAZ/SIPL1/AKT/NF-κB axis plays a crucial role in promoting the malignant phenotypes of TNBC cells.


Author(s):  
Kuldeep Patel ◽  
Jagdish Chandra Rathi ◽  
Neerupma Dhiman

Introduction: Cancer is the world's second leading cause of death and morbidity, behind only heart failure, which claimed the lives of 18.2 million people in 2020. While massive initiatives to establish newer leads and innovative chemotherapeutic methods for combating different types of cancer, continues to be a major concern around the world. As a result, identifying cell-cycle inhibitors and apoptotic triggers to fight cancer cells is an appealing method for finding and developing new anti-tumor drugs. Materials and Methods: The present study involves the rational development and characterization (both physicochemical and spectroscopy) of coumarin-chalcone compounds (A1–A10) and their anti-proliferative potentials against cancer lines of breast cancer origin (MDA-MB468, MDA-MB231, and MCF-7) and non-cancer breast epithelial cell (184B5). Results: The compound A2 exhibited the highest anti-proliferative activity against the cell line MDA-MB-231 as indicated by the GI50 value of 10.06 μM, the compound A6 exhibited the highest anti-proliferative activity against the cell line MDA-MB-468 as indicated by the GI50 value of 17.54 μM, the compound A1 exhibited the highest anti-proliferative activity against the cell line MCF-7 as indicated by the GI50 value of 25.86 μM, and the compound A6 exhibited the highest anti-proliferative activity against the cell line 184B5 as indicated by the GI50 value of 23.26 μM. Conclusion: Furthermore, the research urges medicinal chemists to choose chalcone prototypes with well-defined pathways and SARs while developing more powerful inhibitors. Furthermore, it opens up new pathways for the discovery of anti-cancer derivatives using low molecular weight ligands.


Author(s):  
Marie Shamseddin ◽  
Fabio De Martino ◽  
Céline Constantin ◽  
Valentina Scabia ◽  
Anne‐Sophie Lancelot ◽  
...  

2021 ◽  
Author(s):  
Thomas E Bartlett ◽  
Swati Chandna ◽  
Sandipan Roy

Hormone receptor negative breast cancers are highly aggressive, and are thought to originate from a subtype of epithelial cells called the luminal progenitor. In this paper, we show how to quantify the number of luminal progenitor cells as well as other epithelial subtypes in breast tissue samples using DNA and RNA based measurements. We find elevated levels of these hormone receptor negative luminal progenitor cells in breast tumour biopsies of hormone receptor negative cancers, as well as in healthy breast tissue samples from BRCA1 (FANCS) mutation carriers. We also find that breast tumours from carriers of heterozygous mutations in non-BRCA Fanconi Anaemia pathway genes are much more likely to be hormone receptor negative.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachel M. Lee ◽  
Michele I. Vitolo ◽  
Wolfgang Losert ◽  
Stuart S. Martin

AbstractRecent evidence suggests that groups of cells are more likely to form clinically dangerous metastatic tumors, emphasizing the importance of understanding mechanisms underlying collective behavior. The emergent collective behavior of migrating cell sheets in vitro has been shown to be disrupted in tumorigenic cells but the connection between this behavior and in vivo tumorigenicity remains unclear. We use particle image velocimetry to measure a multidimensional migration phenotype for genetically defined human breast epithelial cell lines that range in their in vivo behavior from non-tumorigenic to aggressively metastatic. By using cells with controlled mutations, we show that PTEN deletion enhances collective migration, while Ras activation suppresses it, even when combined with PTEN deletion. These opposing effects on collective migration of two mutations that are frequently found in patient tumors could be exploited in the development of novel treatments for metastatic disease. Our methods are based on label-free phase contrast imaging, and thus could easily be applied to patient tumor cells. The short time scales of our approach do not require potentially selective growth, and thus in combination with label-free imaging would allow multidimensional collective migration phenotypes to be utilized in clinical assessments of metastatic potential.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yufei Lv ◽  
Xiaohong Lv ◽  
Huike Yang ◽  
Xiuying Qi ◽  
Xiangchen Wang ◽  
...  

BackgroundTriple-negative breast cancer (TNBC) is a significant cause of patient morbidity. The exactly pathobiological features of this condition has yet to be completely elucidated.MethodsBreast cancer data obtained from The Cancer Genome Atlas (TCGA) database were evaluated for lncRNA SNHG6 expression. Normal human breast epithelial cell line (MCF-10A) and other breast cancer cell lines (BT-549, MDA-MB-231, Hs 578t, ZR-75-30, SK-BR-3, MCF-7) were also assessed for lncRNA SNHG6 expressions. Cellular proliferative ability was evaluated with colony formation and CCK-8 assays. The ability of cells to migrate was scrutinized with the wound healing and Boyden chamber cell migration assays. qRT-PCR enabled for detection of lncRNA SNHG6, miR-125b-5p and BMPR1B mRNA expressions. Protein BMPR1B expressions were further assessed using Western Blotting. Direct binding sites between transcripts were determined using dual-luciferase reporter assays. We also constructed a xenograft mouse model to further dissect the vivo implications of lncRNA SNHG6. Ki-67 and c-Caspase-3 expressions were detected using immunohistochemistry staining.ResultsBreast cancer cell lines demonstrated higher lncRNA SNHG6 expressions, particularly TNBC cell lines, in contrast to normal breast epithelial cell lines. This finding coincided with those noted on analysis of TCGA breast cancer data. lncRNA SNHG6 knockdown inhibited TNBC cell proliferation, migration, while promoted cell apoptosis. Furthermore, suppressed lncRNA SNHG6 expressions resulted in lower tumor weights and volumes in a xenograft mouse model, as evidenced by Ki-67 and c-Caspase-3 expression profiles in tumor tissues. miR-125b-5p and lncRNA SNHG6/BMPR1B both possessed direct binding sites for each other which was validated utilizing a dual-luciferase reporter assay. Decreasing lncRNA SNHG6 expression in TNBC cells upregulated miR-125b-5p expression. Another side, inhibiting miR-125b-5p upregulated BMPR1B expression in these cells. Moreover, knocking down lncRNA SNHG6 downregulated BMPR1B expression in TNBC cells, and the finding was rescued in cells which were exposed to miR-125b-5p inhibitor. Downregulating miR-125b-5p mitigated the effect of suppressing lncRNA SNHG6 on TNBC cell proliferation, migration, and apoptosis.ConclusionDownregulation of lncRNA SNHG6 could inhibit TNBC cell proliferative, migratory capabilities and promote apoptosis capability, likely through modulation of the miR-125b-5p/BMPR1B axis. This axis may be targeted in formulating new therapies for TNBC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Natalia V. Bogdanova ◽  
Nina Jguburia ◽  
Dhanya Ramachandran ◽  
Nora Nischik ◽  
Katharina Stemwedel ◽  
...  

DNA double-strand break (DSB) induction and repair have been widely studied in radiation therapy (RT); however little is known about the impact of very low exposures from repeated computed tomography (CT) scans for the efficiency of repair. In our current study, DSB repair and kinetics were investigated in side-by-side comparison of RT treatment (2 Gy) with repeated diagnostic CT scans (≤20 mGy) in human breast epithelial cell lines and lymphoblastoid cells harboring different mutations in known DNA damage repair proteins. Immunocytochemical analysis of well known DSB markers γH2AX and 53BP1, within 48 h after each treatment, revealed highly correlated numbers of foci and similar appearance/disappearance profiles. The levels of γH2AX and 53BP1 foci after CT scans were up to 30% of those occurring 0.5 h after 2 Gy irradiation. The DNA damage repair after diagnostic CT scans was monitored and quantitatively assessed by both γH2AX and 53BP1 foci in different cell types. Subsequent diagnostic CT scans in 6 and/or 12 weeks intervals resulted in elevated background levels of repair foci, more pronounced in cells that were prone to genomic instability due to mutations in known regulators of DNA damage response (DDR). The levels of persistent foci remained enhanced for up to 6 months. This “memory effect” may reflect a radiation-induced long-term response of cells after low-dose x-ray exposure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Bin Fang ◽  
Diana Sofia Acevedo ◽  
Curtis Smart ◽  
Brandon Zinda ◽  
Nadia Alissa ◽  
...  

AbstractDuctal carcinoma in situ (DCIS) is the most common type of pre-invasive breast cancer diagnosed in women. Because the majority of DCIS cases are unlikely to progress to invasive breast cancer, many women are over-treated for DCIS. By understanding the molecular basis of early stage breast cancer progression, we may identify better prognostic factors and design treatments tailored specifically to the predicted outcome of DCIS. Chemokines are small soluble molecules with complex roles in inflammation and cancer progression. Previously, we demonstrated that CCL2/CCR2 chemokine signaling in breast cancer cell lines regulated growth and invasion through p42/44MAPK and SMAD3 dependent mechanisms. Here, we sought to determine the clinical and functional relevance of CCL2/CCR2 signaling proteins to DCIS progression. Through immunostaining analysis of DCIS and IDC tissues, we show that expression of CCL2, CCR2, phospho-SMAD3 and phospho-p42/44MAPK correlate with IDC. Using PDX models and an immortalized hDCIS.01 breast epithelial cell line, we show that breast epithelial cells with high CCR2 and high CCL2 levels form invasive breast lesions that express phospho-SMAD3 and phospho-p42/44MAPK. These studies demonstrate that increased CCL2/CCR2 signaling in breast tissues is associated with DCIS progression, and could be a signature to predict the likelihood of DCIS progression to IDC.


Sign in / Sign up

Export Citation Format

Share Document