Approximation of the Linear Boltzmann Equation by the Fokker-Planck Equation

1967 ◽  
Vol 162 (1) ◽  
pp. 186-188 ◽  
Author(s):  
R. F. Pawula
1982 ◽  
Vol 27 (3) ◽  
pp. 437-452 ◽  
Author(s):  
K. A. Broughan

Thirteen moments are taken of the collision term in the Boltzmann–Fokker– Planck equation for a multi-species, multi-temperature, hot plasma, following the method first developed by Grad for neutral gases. The collision integrals are evaluated for each colliding species pair. These integrals give, in particular, the rate of exchange of momentum and energy produced by collisions. The set of integrals may be combined with moments of the remaining terms in the Boltzmann equation to give thirteen moment equations for each species of particle. To complete the calculation, extensive use was made of the symbolic computer language REDUCE.


1989 ◽  
Vol 9 (1) ◽  
pp. 109-120
Author(s):  
G. Liao ◽  
A.F. Lawrence ◽  
A.T. Abawi

2020 ◽  
Vol 23 (2) ◽  
pp. 450-483 ◽  
Author(s):  
Giacomo Ascione ◽  
Yuliya Mishura ◽  
Enrica Pirozzi

AbstractWe define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.


Sign in / Sign up

Export Citation Format

Share Document