scholarly journals Role of electron correlation in the P,T -odd effects of CdH: A relativistic coupled-cluster investigation

2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Kaushik Talukdar ◽  
Malaya K. Nayak ◽  
Nayana Vaval ◽  
Sourav Pal
Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


2017 ◽  
Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


1988 ◽  
Vol 53 (9) ◽  
pp. 1919-1942 ◽  
Author(s):  
Josef Paldus ◽  
Paul E. S. Wormer ◽  
Marc Benard

The performance of various variational and non-variational approaches to the many-electron correlation problem is examined for a simple four-electron model system consisting of two stretched hydrogen molecules in trapezoidal, rectangular and linear configurations, in which the degree of quasi-degeneracy can be continuously varied from a non-degenerate to an almost degenerate situation. In contrast to an earlier work (K. Jankowski and J. Paldus, Int. J. Quantum Chem. 18, 1243 (1980)) we employ a double-zeta plus polarization basis and examine both single reference and multireference configuration interaction and coupled-cluster-type approaches. The performance of various Davidson-type corrections is also investigated.


2014 ◽  
Vol 140 (20) ◽  
pp. 204304 ◽  
Author(s):  
Aurora Ponzi ◽  
Celestino Angeli ◽  
Renzo Cimiraglia ◽  
Sonia Coriani ◽  
Piero Decleva
Keyword(s):  

2008 ◽  
Vol 07 (04) ◽  
pp. 805-820 ◽  
Author(s):  
XIANGZHU LI ◽  
JOSEF PALDUS

The reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest-size MR CISD wave function as an external source for the most important (primary) triples and quadruples in order to account for the nondynamic correlation effects in the presence of quasidegeneracy, and which is further perturbatively corrected for the remaining (secondary) triples, RMR CCSD(T), is employed to compute the molecular geometry and the energy of the lowest-lying singlet and triplet states, as well as the corresponding singlet–triplet splitting, for all possible isomers of the m, n-pyridyne diradicals. A comparison is made with earlier results that were obtained by other authors, and the role of the multireference effects for both the geometry and the spin multiplicity of the lowest state, as described by the RMR-type methods, is demonstrated on the example of 2,6- and 3,5-pyridynes.


Sign in / Sign up

Export Citation Format

Share Document