relativistic configuration
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 24)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Bao-Ling Shi ◽  
Yi Qin ◽  
Xiang-Fu Li ◽  
Bang-Lin Deng ◽  
Gang Jiang ◽  
...  

Abstract Atomic data of highly charged ions (HCIs) offer an attractive means for plasma diagnostic and stars identification, and the investigations on atomic data are highly desirable. Herein, based on the fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method, we have performed calculations of the fine structure energy levels, wavelengths, transition rates, oscillator strengths, and line strengths for the lowest 21 states of 3p63d8 - 3p53d9 electric dipole (E1) transitions configurations in Fe-like ions (Z = 57, 60, 62, 64, 65). The correlation effects of valence-valence (VV) and core-valence (CV) electrons were systematically considered. In addition, we have taken into account transverse-photon (Breit) interaction and quantum electrodynamics (QED) corrections to treat accurately the atomic state wave functions in the final relativistic configuration interaction (RCI) calculations. Our calculated energy levels and transition wavelengths are in excellent agreement with the available experimental and theoretical results. Most importantly, we predicted some new transition parameters that have not yet been reported. These data would further provide critical insights into better analyzing the physical processes of various astrophysical plasmas.


2021 ◽  
Vol 257 (2) ◽  
pp. 56
Author(s):  
X. H. Zhang ◽  
G. Del Zanna ◽  
K. Wang ◽  
P. Rynkun ◽  
P. Jönsson ◽  
...  

Abstract The multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic configuration interaction methods are used to provide excitation energies, lifetimes, and radiative transition data for the 604 (699, 702, 704, 704, 704, and 699) lowest levels of the 3s 23p 2, 3s3p 3, 3s 23p3d, 3p 4, 3s3p 23d, 3s 23d 2, 3p 33d, 3s3p3d 2, 3s3d 3, 3p3d 3, 3p 23d 2, 3s 23p4s, 3s 23p4p, 3s 23p4d, 3s 23p4f, 3s3p 24s, 3s3p 24p, 3s3p 24d, 3s3p 24f, 3s 23d4s, 3s 23d4p, 3p 34s, 3p 34p, 3s3p3d4s, 3s 23p5s, and 3s 23p5p configurations in Cr xi, (Mn xii, Fe xiii, Co xiv, Ni xv, Cu xvi, and Zn xvii). Previous line identifications of Fe xiii and Ni xv in the EUV and X-ray wavelength ranges are reviewed by comprehensively comparing the MCDHF theoretical results with available experimental data. Many recent identifications of Fe xiii and Ni xv lines are confirmed, and several new identifications for these two ions are proposed. A consistent atomic data set with spectroscopic accuracy is provided for the lowest hundreds of levels for Si-like ions of iron-group elements of astrophysical interest, for which experimental values are scarce. The uncertainty estimation method suggested by Kramida, applied to the comparison of the length and velocity line strength values, is used for ranking the transition data. The correlation of the latter with the gauge dependency patterns of the line strengths is investigated.


2021 ◽  
Vol 38 (11) ◽  
pp. 113101
Author(s):  
Qing Liu ◽  
Jiguang Li ◽  
Jianguo Wang ◽  
Yizhi Qu

The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1s 2, 1s2s, and 1s2p states of He I, are investigated using the multi-configuration Dirac–Hartree–Fock method. In the subsequent relativistic configuration interaction computations, the Breit interaction and the QED effect are considered as perturbation, separately. Our transition energies, oscillator strengths, and transition rates are in good agreement with the experimental and other theoretical results. As a result, the QED effect is not important for helium atoms, however, the effect of the Breit interaction plays a significant role in the transition energies, the oscillator strengths and transition rates.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 104
Author(s):  
Igor M. Savukov ◽  
Dmytro Filin ◽  
Pinghan Chu ◽  
Michael W. Malone

Heavy atoms present challenges to atomic theory calculations due to the large number of electrons and their complicated interactions. Conventional approaches such as calculations based on Cowan’s code are limited and require a large number of parameters for energy agreement. One promising approach is relativistic configuration-interaction and many-body perturbation theory (CI-MBPT) methods. We present CI-MBPT results for various atomic systems where this approach can lead to reasonable agreement: La I, La II, Th I, Th II, U I, Pu II. Among atomic properties, energies, g-factors, electric dipole moments, lifetimes, hyperfine structure constants, and isotopic shifts are discussed. While in La I and La II accuracy for transitions is better than that obtained with other methods, more work is needed for actinides.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 96
Author(s):  
Dmytro Filin ◽  
Igor Savukov ◽  
James Colgan

Recently, there has been increased interest in developing advanced bright sources for lithography. Sn ions are particularly promising due to their bright emission spectrum in the required wavelength range. Cowan’s code has been used to model the emission; however, it has adjustable parameters, which limit its predictive power, and it has limited relativistic treatment. Here, we present calculations based on ab initio relativistic configuration-interaction many-body perturbation theory (CI-MBPT), with relativistic corrections included at the Dirac-Fock level and core-polarization effects with the second-order MBPT. As a proof of principle that the theory is generally applicable to other Sn ions with proper development, we focused on one ion where direct comparison with experimental observations is possible. The theory can also be used for ions of other elements to predict emissions for optimization of plasma-based bright sources.


2021 ◽  
Vol 257 (2) ◽  
pp. 29
Author(s):  
Laima Radžiūtė ◽  
Gediminas Gaigalas ◽  
Daiji Kato ◽  
Pavel Rynkun ◽  
Masaomi Tanaka

Abstract In this work, we continue large-scale ab initio computations for single ionized lanthanides. Extended atomic calculations for the set of ions from Pr ii (Z = 59) to Gd ii (Z = 64) have been performed in our previous work. In this study, ions from Tb ii (Z = 65) to Yb ii (Z = 70) are analyzed. By employing the same multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction methods that are implemented in the general-purpose relativistic atomic structure package GRASP2018, the energy levels and transition data of electric dipole (E1) transitions are computed. These computations are based on the strategies (with small variations) of Paper I. Accuracy of data is evaluated by comparing the computed energy levels with the data provided by the National Institute of Standards and Technology (NIST) database and with data from various methods. We obtain the average accuracy in the energy level compared with the NIST database: 6%, 5%, 4%, 5%, 3%, and 3% for Tb ii, Dy ii, Ho ii, Er ii, Tm ii, and Yb ii, respectively. We also provide extensive comparison of transition probabilities and wavelengths. Our results reach the average accuracy of transition wavelengths: 9%, 9%, 9%, 3%, 4%, and 11% for Tb ii, Dy ii, Ho ii, Er ii, Tm ii, and Yb ii, respectively.


2021 ◽  
Vol 502 (3) ◽  
pp. 3780-3799
Author(s):  
W Li ◽  
A M Amarsi ◽  
A Papoulia ◽  
J Ekman ◽  
P Jönsson

ABSTRACT Accurate atomic data are essential for opacity calculations and for abundance analyses of the Sun and other stars. The aim of this work is to provide accurate and extensive results of energy levels and transition data for C i–iv. The Multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction methods were used in this work. To improve the quality of the wavefunctions and reduce the relative differences between length and velocity forms for transition data involving high Rydberg states, alternative computational strategies were employed by imposing restrictions on the electron substitutions when constructing the orbital basis for each atom and ion. Transition data, for example, weighted oscillator strengths and transition probabilities, are given for radiative electric dipole (E1) transitions involving levels up to 1s22s22p6s for C i, up to 1s22s27f for C ii, up to 1s22s7f for C iii, and up to 1s28g for C iv. Using the difference between the transition rates in length and velocity gauges as an internal validation, the average uncertainties of all presented E1 transitions are estimated to be 8.05 per cent, 7.20 per cent, 1.77 per cent, and 0.28 per cent, respectively, for C i–iv. Extensive comparisons with available experimental and theoretical results are performed and good agreement is observed for most of the transitions. In addition, the C i data were employed in a re-analysis of the solar carbon abundance. The new transition data give a line-by-line dispersion similar to the one obtained when using transition data that are typically used in stellar spectroscopic applications today.


Sign in / Sign up

Export Citation Format

Share Document