electron model
Recently Published Documents


TOTAL DOCUMENTS

567
(FIVE YEARS 55)

H-INDEX

45
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hongxia Hao ◽  
Itai Leven ◽  
Teresa Head-Gordon

AbstractReaction rates of common organic reactions have been reported to increase by one to six orders of magnitude in aqueous microdroplets compared to bulk solution, but the reasons for the rate acceleration are poorly understood. Using a coarse-grained electron model that describes structural organization and electron densities for water droplets without the expense of ab initio methods, we investigate the electric field distributions at the air-water interface to understand the origin of surface reactivity. We find that electric field alignments along free O–H bonds at the surface are ~16 MV/cm larger on average than that found for O–H bonds in the interior of the water droplet. Furthermore, electric field distributions can be an order of magnitude larger than the average due to non-linear coupling of intramolecular solvent polarization with intermolecular solvent modes which may contribute to even greater surface reactivity for weakening or breaking chemical bonds at the droplet surface.


Author(s):  
Hui Liu ◽  
Li Li Ma ◽  
Yi Chao Yan ◽  
Qing Quan Lei ◽  
Meng Xin

Abstract The addition of graphene can change the distribution of conductive pathways in the polymer composites and further affect the dielectric properties. In this work, a facile and environmentally friendly method was proposed to enhance dielectric properties by manipulating the reduction extent of reduced graphene oxide (RGO) in polyvinylidene fluoride (PVDF) matrix just through altering the thermal reduction treatment time. Measurement results showed that the electrical percolation occurred as thermal reduction treatment time increased and the conduction mechanism changed into approximate free electron model. RGO/PVDF composites with tailorable dielectric properties were realized with a low filler loading level.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015401
Author(s):  
Yunxiao Shi ◽  
Zhe Xu ◽  
Jingyu Wang ◽  
Zehao Huang ◽  
Hui Liu ◽  
...  

Abstract Within the frame of classical electrodynamics, nonlinear Thomson scattering by an electron of a tightly focused circularly polarized laser has been investigated. The electron motion and spatial radiation characteristics are studied numerically when the electron is initially stationary. The numerical analysis shows that the direction of the maximum radiation power is in linear with the initial phase of the laser pulse. Furthermore, we generalize the rule to the case of arbitrary beam waist, peak amplitude and pulse width. Then the radiation distribution is studied when the electron propagates in the opposite sense with respect to the laser pulse and the linear relationship still holds true. Last we pointed out the limitation of the single electron model in this paper.


2021 ◽  
Author(s):  
Zhuofan Shen ◽  
Shaoting Peng ◽  
William Glover

The FlexiBLE embedding method introduced in the preceding companion paper [Z. Shen and W. J. Glover, J. Chem. Phys. X, X (2021)] is applied to explore the structure and dynamics of the aqueous solvated electron at an all-electron density functional theory QM/MM level. Compared to a one-electron mixed quantum/classical description, we find the dynamics of the many-electron model of the hydrated electron exhibits enhanced coupling to water OH stretch modes. Natural Bond Orbital analysis reveals this coupling is due to significant population of water OH σ* orbitals, reaching 20%. Based on this, we develop a minimal frontier orbital picture of the hydrated electron involving a cavity orbital and important coupling to 4-5 coordinating OH σ* orbitals. Implications for the interpretation of the spectroscopy of this interesting species are discussed.


Space Weather ◽  
2021 ◽  
Author(s):  
Xiangning Chu ◽  
Donglai Ma ◽  
Jacob Bortnik ◽  
W. Kent Tobiska ◽  
Alfredo Cruz ◽  
...  

2021 ◽  
Author(s):  
Zhuofan Shen ◽  
Shaoting Peng ◽  
William Glover

The FlexiBLE embedding method introduced in the preceding companion paper [Z. Shen and W. J. Glover, J. Chem. Phys. X, X (2021)] is applied to explore the structure and dynamics of the aqueous solvated electron at an all-electron density functional theory QM/MM level. Compared to a one-electron mixed quantum/classical description, we find the dynamics of the many-electron model of the hydrated electron exhibits enhanced coupling to water OH stretch modes. Natural Bond Orbital analysis reveals this coupling is due to significant population of water OH σ* orbitals, reaching 20%. Based on this, we develop a minimal frontier orbital picture of the hydrated electron involving a cavity orbital and important coupling to 4-5 coordinating OH σ* orbitals. Implications for the interpretation of the spectroscopy of this interesting species are discussed.


Author(s):  
T.Yu. Astakhova ◽  
G.A. Vinogradov

A one-electron model is proposed to describe a polaron on a dimerized polyacetylene lattice. Within the framework of the formulated model, the dynamics of a freely moving polaron is considered. The results obtained are compared with the many-electron model that takes into account all π-electrons of the valence band. Polaron can move at subsonic and supersonic speeds. The subsonic polaron is stable. A supersonic polaron loses stability at times ∼ 6 000 fs. A supersonic polaron has a forbidden speed range. An analytical solution to the continual approximation helps to understand the reason for the existence of forbidden speeds. The dynamics of a free polaron is similar to the dynamics of a polaron in an electric field. The proposed one-electron approximation significantly expands the possibilities of numerical simulation in comparison with the traditional many-electron model.


2021 ◽  
Vol 87 (5) ◽  
Author(s):  
D.A. Kaltsas ◽  
G.N. Throumoulopoulos ◽  
P.J. Morrison

We present two generalized hybrid kinetic-Hall magnetohydrodynamics (MHD) models describing the interaction of a two-fluid bulk plasma, which consists of thermal ions and electrons, with energetic, suprathermal ion populations described by Vlasov dynamics. The dynamics of the thermal components are governed by standard fluid equations in the Hall MHD limit with the electron momentum equation providing an Ohm's law with Hall and electron pressure terms involving a gyrotropic electron pressure tensor. The coupling of the bulk, low-energy plasma with the energetic particle dynamics is accomplished through the current density (current coupling scheme; CCS) and the ion pressure tensor appearing in the momentum equation (pressure coupling scheme; PCS) in the first and the second model, respectively. The CCS is a generalization of two well-known models, because in the limit of vanishing energetic and thermal ion densities, we recover the standard Hall MHD and the hybrid kinetic-ions/fluid-electron model, respectively. This provides us with the capability to study in a continuous manner, the global impact of the energetic particles in a regime extending from vanishing to dominant energetic particle densities. The noncanonical Hamiltonian structures of the CCS and PCS, which can be exploited to study equilibrium and stability properties through the energy-Casimir variational principle, are identified. As a first application here, we derive a generalized Hall MHD Grad–Shafranov–Bernoulli system for translationally symmetric equilibria with anisotropic electron pressure and kinetic effects owing to the presence of energetic particles using the PCS.


Sign in / Sign up

Export Citation Format

Share Document