scholarly journals Quantum motion of a squeezed mechanical oscillator attained via an optomechanical experiment

2020 ◽  
Vol 102 (5) ◽  
Author(s):  
P. Vezio ◽  
A. Chowdhury ◽  
M. Bonaldi ◽  
A. Borrielli ◽  
F. Marino ◽  
...  
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Firas Turki ◽  
Hassène Gritli ◽  
Safya Belghith

This paper proposes a state-feedback controller using the linear matrix inequality (LMI) approach for the robust position control of a 1-DoF, periodically forced, impact mechanical oscillator subject to asymmetric two-sided rigid end-stops. The periodic forcing input is considered as a persistent external disturbance. The motion of the impacting oscillator is modeled by an impulsive hybrid dynamics. Thus, the control problem of the impact oscillator is recast as a problem of the robust control of such disturbed impulsive hybrid system. To synthesize stability conditions, we introduce the S-procedure and the Finsler lemmas by only considering the region within which the state evolves. We show that the stability conditions are first expressed in terms of bilinear matrix inequalities (BMIs). Using some technical lemmas, we convert these BMIs into LMIs. Finally, some numerical results and simulations are given. We show the effectiveness of the designed state-feedback controller in the robust stabilization of the position of the impact mechanical oscillator under the disturbance.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 462
Author(s):  
Ji Xia ◽  
Fuyin Wang ◽  
Chunyan Cao ◽  
Zhengliang Hu ◽  
Heng Yang ◽  
...  

Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass meff~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of . The other nanobeam couples light to excite optical fundamental supermodes at and 1554.464 nm with a larger than 4 × 104. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 . These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Jiaozi Wang ◽  
Giuliano Benenti ◽  
Giulio Casati ◽  
Wen-ge Wang

2000 ◽  
Vol 23 (3) ◽  
pp. 409-410
Author(s):  
Gottfried Mayer-Kress

Among the metaphors used in the target article are “musical instruments,” “water waves,” and other types of mechanical oscillators. The corresponding equations have inertial properties and lead to standing waves that depend on boundary conditions. Other, physiologically relevant quantities like refractory times are not contained in the mechanical oscillator model but occur naturally, for instance, in biological forest fire metaphors.


2004 ◽  
Vol 43 (4) ◽  
pp. 1011-1017 ◽  
Author(s):  
Q. H. Liu ◽  
J. X. Hou ◽  
Y. P. Xiao ◽  
L. X. Li
Keyword(s):  

2008 ◽  
Vol 78 (1) ◽  
Author(s):  
I. Lizuain ◽  
S. V. Mousavi ◽  
D. Seidel ◽  
J. G. Muga

Sign in / Sign up

Export Citation Format

Share Document