scholarly journals Discrete-basis-set method for electron-molecule continuum wave functions

1978 ◽  
Vol 18 (5) ◽  
pp. 2107-2114 ◽  
Author(s):  
Arne W. Fliflet ◽  
Vincent McKoy
Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

There have been several successful applications of the Dirac–Hartree–Fock (DHF) equations to the calculation of numerical electronic wave functions for diatomic molecules (Laaksonen and Grant 1984a, 1984b, Sundholm 1988, 1994, Kullie et al. 1999). However, the use of numerical techniques in relativistic molecular calculations encounters the same difficulties as in the nonrelativistic case, and to proceed to general applications beyond simple diatomic and linear molecules it is necessary to resort to an analytic approximation using a basis set expansion of the wave function. The techniques for such calculations may to a large extent be based on the methods developed for nonrelativistic calculations, but it turns out that the transfer of these methods to the relativistic case requires special considerations. These considerations, as well as the development of the finite basis versions of both the Dirac and DHF equations, form the subject of the present chapter. In particular, in the early days of relativistic quantum chemistry, attempts to solve the DHF equations in a basis set expansion sometimes led to unexpected results. One of the problems was that some calculations did not tend to the correct nonrelativistic limit. Subsequent investigations revealed that this was caused by inconsistencies in the choice of basis set for the small-component space, and some basic principles of basisset selection for relativistic calculations were established. The variational stability of the DHF equations in a finite basis has also been a subject of debate. As we show in this chapter, it is possible to establish lower variational bounds, thus ensuring that the iterative solution of the DHF equations does not collapse. There are two basically different strategies that may be followed when developing a finite basis formulation for relativistic molecular calculations. One possibility is to expand the large and small components of the 4-spinor in a basis of 2-spinors. The alternative is to expand each of the scalar components of the 4-spinor in a scalar basis. Both approaches have their advantages and disadvantages, though the latter approach is obviously the easier one for adapting nonrelativistic methods, which work in real scalar arithmetic.


1984 ◽  
Vol 30 (3) ◽  
pp. 1507-1508 ◽  
Author(s):  
C. Mega ◽  
H. Herold ◽  
W. Rösner ◽  
H. Ruder ◽  
G. Wunner

2016 ◽  
Vol 93 (1) ◽  
Author(s):  
Romain Gaillac ◽  
Morgane Vacher ◽  
Alfred Maquet ◽  
Richard Taïeb ◽  
Jérémie Caillat

The troublesome problem of developing cusps in ordinary molecular wave functions can be avoided by working with momentum-space wavefunctions for these have no cusps. The need for continuum wavefunctions can be eliminated if one works with a hydrogenic basis set in Fock’s projective momentmn space. This basis set is the set of R 4 spherical harmonics and as a consequence one may obtain, solely by the ordinary angular momentum calculus, algebraic expressions for all the integrals required in the solution of the momentum space Schrödinger equation. A number of these integrals and a number of R 4 transformation coefficients are tabulated. The method is then applied to several simple united-atom and l.c.a.o. wavefunctions for H + 2 and ground state energies and corrected wavefunctions are obtained. It is found in this numerical work that the method is most appropriate at internuclear distances somewhat less than the equilibrium distance. In Fock’s representation both l.c.a.o. and unitedatom approximations become exact as the internuclear distance approaches zero. The united-atom expansion can be viewed as an eigenvalue equation for the root-mean-square momentum, p 0 = √( — 2 E ). In the molecule, the matrix operator corresponding to p 0 is related to the operator for the united-atom by a sum of unitary transformations, one for each nucleus in the molecule.


1972 ◽  
Vol 94 (13) ◽  
pp. 4461-4467 ◽  
Author(s):  
Edward A. Laws ◽  
Richard M. Stevens ◽  
William N. Lipscomb

Sign in / Sign up

Export Citation Format

Share Document