Muon spectrum and convoy effects after muon-catalyzed fusion

1989 ◽  
Vol 40 (5) ◽  
pp. 2839-2842 ◽  
Author(s):  
B. Müller ◽  
H. E. Rafelski ◽  
J. Rafelski
2021 ◽  
pp. 112712
Author(s):  
Kenichi Okutsu ◽  
Takuma Yamashita ◽  
Yasushi Kino ◽  
Ryota Nakashima ◽  
Konan Miyashita ◽  
...  

1989 ◽  
Vol 39 (1) ◽  
pp. 311-356 ◽  
Author(s):  
W H Breunlich ◽  
P Kammel ◽  
J S Cohen ◽  
M Leon

1979 ◽  
Vol 57 (7) ◽  
pp. 921-925 ◽  
Author(s):  
A. K. Chakrabarti ◽  
A. K. Das ◽  
A. K. De

Using the recent ISR data of proton–proton interactions on the inclusive production of pions and nucleons, realistic values of the mean pion inelasticity Kπ and the mean nucleon inelasticity KT have been estimated. These values have been used for the derivation of the sea level differential muon spectrum from the primary nucleon spectrum and vice versa using the CKP model as an extension of the work presented in an earlier article. It is found that none of the measured primary nucleon spectra of Ryan, Ormes, and Balasubrahmanyan and Grigorov, Rapoport, and Shestoperov fit any of the precisely measured muon spectra of Ayre, Baxendale, Hume, Nandi, Thompson, and Whalley and Allkofer, Carstensen, and Dau in spectral shape or the absolute value. On the other hand good agreement between the derived muon spectra and the spectra of Allkofer et al. and Ayre et al. is found if the primary nucleon spectra of the forms, N(Ep) = (1.38 ± 0.08)Ep−2.59 and N(Ep) = (1.00 ± 0.10)Ep−2.55, respectively, are assumed. The first form is comparable with that obtained by Brooke, Hayman, Kamiya, and Wolfendale following more approximate but similar procedure. It is also not unjustified when compared with the measured primary all nuclei spectrum of Grigorov et al. in the light of suggestions made by Ellsworth, Ito, Macfall, Siohan, Streitmatter, Tonwar, Vishwanath, Yodh, and Balasubrahmanyan. By comparing the pion production spectra derived from the same primary nucleon spectrum but using the CKP and the scaling models, it is concluded that the results are sensitive to the model assumed for the collisions.


1982 ◽  
Author(s):  
S.E. Jones ◽  
K.D. Watts ◽  
A.J. Caffrey ◽  
J.B. Walter

1989 ◽  
Author(s):  
S Jones ◽  
E Palmer ◽  
L Rees ◽  
E Sheely ◽  
S Taylor ◽  
...  

2021 ◽  
Vol 71 (1) ◽  
pp. 23-36
Author(s):  
Robert N. Cahn

John David (“Dave”) Jackson, a Canadian-born theoretical physicist, contributed significantly to particle, nuclear, and atomic physics. He is best known, however, for his text Classical Electrodynamics, which has been a fixture in physics graduate education around the world for more than 50 years. It is generally referred to simply as “Jackson.” This textbook, which has inspired fear and wonder alike in generations of students, clearly reflects the author's fascination with physical phenomena, his renowned mathematical dexterity, and his appreciation of the elegance of physical laws. Jackson's major contributions to research included the theory of muon-catalyzed fusion; the analysis, with Kurt Gottfried, of angular distributions in quasi-two-body elementary particle collisions; and the elucidation of charmonium-state decays. Jackson influenced the development of physics research throughout the United States as well as internationally—particularly through his work on the nascent Superconducting Super Collider. An active promoter of civil liberties and human rights, he was one of the leaders of the efforts to free Andrei Sakharov, Yuri Orlov, and Anatoly Shcharansky from Soviet imprisonment.


Sign in / Sign up

Export Citation Format

Share Document