Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states

2002 ◽  
Vol 66 (2) ◽  
Author(s):  
Ying Wu ◽  
Robin Côté
Author(s):  
Brian R. La Cour ◽  
Thomas W. Yudichak

AbstractThe relationship between quantum entanglement and classical impropriety is considered in the context of multi-modal squeezed states of light. Replacing operators with complex Gaussian random variables in the Bogoliubov transformations for squeezed states, we find that the resulting transformed variables are not only correlated but also improper. A simple threshold exceedance model of photon detection is considered and used to demonstrate how the behavior of improper Gaussian random variables can mimic that of entangled photon pairs when coincidence post-selection is performed.


2001 ◽  
Vol 64 (6) ◽  
Author(s):  
Silvio De Siena ◽  
Antonio Di Lisi ◽  
Fabrizio Illuminati

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaetano Frascella ◽  
Sascha Agne ◽  
Farid Ya. Khalili ◽  
Maria V. Chekhova

AbstractAmong the known resources of quantum metrology, one of the most practical and efficient is squeezing. Squeezed states of atoms and light improve the sensing of the phase, magnetic field, polarization, mechanical displacement. They promise to considerably increase signal-to-noise ratio in imaging and spectroscopy, and are already used in real-life gravitational-wave detectors. But despite being more robust than other states, they are still very fragile, which narrows the scope of their application. In particular, squeezed states are useless in measurements where the detection is inefficient or the noise is high. Here, we experimentally demonstrate a remedy against loss and noise: strong noiseless amplification before detection. This way, we achieve loss-tolerant operation of an interferometer fed with squeezed and coherent light. With only 50% detection efficiency and with noise exceeding the level of squeezed light more than 50 times, we overcome the shot-noise limit by 6 dB. Sub-shot-noise phase sensitivity survives up to 87% loss. Application of this technique to other types of optical sensing and imaging promises a full use of quantum resources in these fields.


2019 ◽  
Vol 31 (08) ◽  
pp. 1950026 ◽  
Author(s):  
Asao Arai

We introduce a concept of singular Bogoliubov transformation on the abstract boson Fock space and construct a representation of canonical commutation relations (CCRs) which is inequivalent to any direct sum of the Fock representation. Sufficient conditions for the representation to be irreducible are formulated. Moreover, an example of such representations of CCRs is given.


2001 ◽  
Vol 8 (6) ◽  
pp. 422-430
Author(s):  
Suc-Kyoung Hong ◽  
Chung-In Um ◽  
Kyu-Hwang Yeon

2014 ◽  
Vol 22 (20) ◽  
pp. 24192 ◽  
Author(s):  
Dehuan Kong ◽  
Zongyang Li ◽  
Shaofeng Wang ◽  
Xuyang Wang ◽  
Yongmin Li

2014 ◽  
Vol 26 (06) ◽  
pp. 1450009
Author(s):  
Joachim Kupsch

Canonical transformations (Bogoliubov transformations) for fermions with an infinite number of degrees of freedom are studied within a calculus of superanalysis. A continuous representation of the orthogonal group is constructed on a Grassmann module extension of the Fock space. The pull-back of these operators to the Fock space yields a unitary ray representation of the group that implements the Bogoliubov transformations.


2002 ◽  
Vol 19 (11) ◽  
pp. 1625-1627 ◽  
Author(s):  
Yang Xiao-Xue ◽  
Wu Ying

Sign in / Sign up

Export Citation Format

Share Document